1
|
Blanch-Lázaro B, Chamings A, Ribot RFH, Bhatta TR, Berg ML, Alexandersen S, Bennett ATD. Beak and feather disease virus (BFDV) persists in tissues of asymptomatic wild Crimson Rosellas. Commun Biol 2024; 7:1017. [PMID: 39289466 PMCID: PMC11408594 DOI: 10.1038/s42003-024-06652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
Infectious diseases can drive populations and species to extinction. Beak and feather disease virus (BFDV) is a circovirus of global conservation concern that can infect all Psittaciformes and some other species. Yet some parrot species, such as Crimson rosellas (Platycercus elegans), can live successfully with high BFDV prevalence (>40%) with no clinical signs reported in infected individuals. We assessed BFDV load in 10-12 tissues per bird, from n = 66 P. elegans, to reveal tissue tropism and BFDV persistence in tissues. Here we show that in 94% of individuals, BFDV was detected in one or more tissues. While BFDV replicated to high levels in subadults, in adults (some confirmed seropositive) the virus persisted in various tissues at much lower levels. Our findings reveal that BFDV is much more common in wild P. elegans than previously thought and suggest that current screening practices (mostly on blood) may substantially underestimate BFDV infection estimates, with implications for biosecurity and conservation programs globally.
Collapse
Affiliation(s)
- Berta Blanch-Lázaro
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia.
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, Australia.
- Australian Centre for Disease Preparedness (ACDP), CSIRO, Geelong, VIC, Australia.
| | - Anthony Chamings
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, Australia
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, Australia
| | - Raoul F H Ribot
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia
| | - Tarka Raj Bhatta
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, Australia
- Australian Rickettsial Reference Laboratory (ARRL), Barwon Health, University Hospital Geelong, Geelong, VIC, Australia
- Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Deakin University, Geelong, VIC, Australia
| | - Mathew L Berg
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia
- Parks Victoria, Melbourne, VIC, Australia
| | - Soren Alexandersen
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, Australia
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, University Hospital Geelong, Geelong, VIC, Australia
- Department of Animal and Veterinary Sciences, Aarhus University, Viborg Campus, Tjele, Denmark
| | - Andrew T D Bennett
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, VIC, Australia
| |
Collapse
|
2
|
MacColl C, Watson JEM, Leseberg NP, Seaton R, Das T, Das S, Raidal SR. Beak and feather disease virus detected in the endangered Red Goshawk (Erythrotriorchis radiatus). Sci Rep 2024; 14:10263. [PMID: 38704425 PMCID: PMC11069563 DOI: 10.1038/s41598-024-60874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
We report the first detection and prevalence of Beak and feather disease virus (BFDV) in Australia's Red Goshawk (Erythrotriorchis radiatus). This is a new host for this pervasive pathogen amongst a growing list of non-psittacine species including birds of prey from the orders Accipitriformes (hawks, eagles, kites), Falconiformes (falcons and caracas), and Strigiformes (owls). The Red Goshawk is the first non-psittacine species listed as Endangered to be diagnosed with BFDV. We report an initial case of infection discovered post-mortem in a dead nestling and subsequent surveillance of birds from across northern Australia. We reveal BFDV prevalence rates in a wild raptor population for the first time, with detections in 25% (n = 7/28) of Red Goshawks sampled. Prevalence appears higher in juveniles compared to adults, although not statistically significant, but is consistent with studies of wild psittacines. BFDV genotypes were associated with the Loriinae (lorikeets, budgerigar, and fig parrots), Cacatuini (Cockatoos), and Polytelini (long-tailed parrots) tribes; species which are preyed upon by Red Goshawks. A positive BFDV status may be associated with lower body mass but small sample sizes precluded robust statistical analysis. We postulate the possible impacts of the virus on Red Goshawks and discuss future research priorities given these preliminary observations.
Collapse
Affiliation(s)
- Christopher MacColl
- School of the Environment, The University of Queensland, St Lucia, QLD, 4072, Australia.
- Research and Recovery of Endangered Species Group, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - James E M Watson
- School of the Environment, The University of Queensland, St Lucia, QLD, 4072, Australia
- Research and Recovery of Endangered Species Group, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nicholas P Leseberg
- School of the Environment, The University of Queensland, St Lucia, QLD, 4072, Australia
- Research and Recovery of Endangered Species Group, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Richard Seaton
- Australian Wildlife Conservancy, P.O. Box 8070, Subiaco East, WA, 6008, Australia
| | - Tridip Das
- School of Agriculture, Environmental and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Shubhagata Das
- School of Agriculture, Environmental and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Shane R Raidal
- School of Agriculture, Environmental and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
3
|
Okoh GR, Ariel E, Whitmore D, Horwood PF. Metagenomic and Molecular Detection of Novel Fecal Viruses in Free-Ranging Agile Wallabies. ECOHEALTH 2023; 20:427-440. [PMID: 38091182 DOI: 10.1007/s10393-023-01659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/26/2023] [Indexed: 02/21/2024]
Abstract
The agile wallaby (Notamacropus agilis) is one of the most abundant marsupial species in northern Queensland and a competent host for the zoonotic Ross River virus. Despite their increased proximity and interactions with humans, little is known about the viruses carried by these animals, and whether any are of conservation or zoonotic importance. Metagenomics and molecular techniques were used in a complementary manner to identify and characterize novel viruses in the fecal samples of free-ranging agile wallabies. We detected a variety of novel marsupial-related viral species including agile wallaby atadenovirus 1, agile wallaby chaphamaparvovirus 1-2, agile wallaby polyomavirus 1-2, agile wallaby associated picobirnavirus 1-9, and a known macropod gammaherpesvirus 3. Phylogenetic analyses indicate that most of these novel viruses would have co-evolved with their hosts (agile wallabies). Additionally, non-marsupial viruses that infect bacteria (phages), plants, insects, and other eukaryotes were identified. This study highlighted the utility of non-invasive sampling as well as the integration of broad-based molecular assays (consensus PCR and next generation sequencing) for monitoring the emergence of potential pathogenic viruses in wildlife species. Furthermore, the novel marsupial viruses identified in this study will enrich the diversity of knowledge about marsupial viruses, and may be useful for developing diagnostics and vaccines.
Collapse
Affiliation(s)
- God'spower Richard Okoh
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia.
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - David Whitmore
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
4
|
Athukorala A, Lacasse C, Curtiss JB, Phalen DN, Sarker S. Characterisation of a novel aviadenovirus associated with disease in tawny frogmouths (Podargus strigoides). Virology 2023; 588:109904. [PMID: 37856912 DOI: 10.1016/j.virol.2023.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Aviadenoviruses are widespread in wild birds but rarely cause disease in nature. However, when naïve species are exposed to poultry or aviaries, aviadenoviruses can lead to disease outbreaks. This study characterised a novel aviadenovirus infection in a native Australian bird, the tawny frogmouth (Podargus strigoides) during an outbreak investigation. The identified complete genome of aviadenovirus, named tawny frogmouth aviadenovirus A (TwAviAdV-A) was 41,175 bp in length containing 52 putative genes. TwAviAdV-A exhibits the common aviadenovirus genomic organisation but with a notable monophyletic subclade in the phylogeny. The TwAviAdV-A virus was hepatotrophic and the six frogmouths presented to the wildlife hospitals in South Eastern Queensland most commonly exhibited regurgitation (in four frogmouths). Three were died or euthanized, two recovered, and one showed no signs. The detection of TwAviAdV-A in frogmouths coming into care re-emphasizes the need for strict biosecurity protocols in wildlife hospitals and care facilities.
Collapse
Affiliation(s)
- Ajani Athukorala
- Department of Microbiology, Anatomy, Physiology, And Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Claude Lacasse
- RSPCA Queensland, 139 Wacol Station Road, Wacol, Queensland, 4076, Australia.
| | - Jeffrey B Curtiss
- IDEXX Laboratories, 3 Overend Street, East Brisbane, Queensland, 4169, Australia.
| | - David N Phalen
- Sydney School of Veterinary Science, University of Sydney, Camden, New South Wales, Australia; Schubot Exotic Bird Health, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, 77843-4467, USA.
| | - Subir Sarker
- Department of Microbiology, Anatomy, Physiology, And Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, 3086, Australia; Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
5
|
Ghaniei A, Tohidi E. Fluctuation of the prevalence of beak and feather disease virus in captive psittacines in Iran. Arch Virol 2023; 168:274. [PMID: 37851115 DOI: 10.1007/s00705-023-05895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Beak and feather disease virus (BFDV) is one of the most life-threatening viral agents infecting parrot species. In this study, we investigated fluctuation in the prevalence of beak and feather disease virus (BFDV) in captive psittacines in Iran. Two series of feather samples from different psittacine species, received between July 2019 and July 2021 (n = 1009) and between July 2021 and July 2022 (n = 2020), were examined for the presence of BFDV using the PCR method, and the host species distribution and temporal prevalence of BFDV within populations were calculated. The results showed a total viral prevalence of 26.86% and 26.88% within sample series 1 and 2, respectively. By examining both sample series, the prevalence of BFDV was found to be the highest (P < 0.05) in Nymphicus hollandicus and the lowest (P < 0.05) in Psittacus erithacus, Myiopsitta monachus, Pyrrhura molinae, and Aratinga solstitialis. The viral prevalence was significantly higher (P < 0.05) within the series 1 than the series 2 samples only in Nymphicus hollandicus. Within series 2, the viral prevalence was significant (P < 0.05) in samples from Nymphicus hollandicus collected in March. This study indicates significant prevalence of BFDV in captive Nymphicus hollandicus populations and suggests that the fluctuation in the prevalence of BFDV could be due to the combined influence of host-species and temporal factors.
Collapse
Affiliation(s)
- Abolfazl Ghaniei
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Emadodin Tohidi
- Biotechnology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| |
Collapse
|
6
|
Desingu PA, Nagarajan K. Detection of beak and feather disease virus in India and its implications. Transbound Emerg Dis 2022; 69:e3469-e3478. [PMID: 36316791 DOI: 10.1111/tbed.14749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Beak and feather disease virus (BFDV) has been found in Oceania, Africa, Asia and Europe, but the virus has not yet been detected in India. Here we are reporting the detection of BFDV in exotic rainbow lorikeets (Trichoglossus haematodus) in India. In the phylogenetic analysis, India's witnessed BFDV complete genome, replication (Rep) and capsid (Cap) sequences were displayed close to previously reported T. haematodus infecting BFDV from Australia. Further, we observed that the Indian and exotic Psittaciformes except T. haematodus housed together with the BFDV infected rainbow lorikeets did not display clinical signs and were negative for 4-month genome detection. This observation raised the suspicion that BFDV could cause host-specific infections. In addition, our phylogenetic analysis using 361 BFDV complete genome sequences from various bird species revealed that they were mainly grouped according to the specific species. Likewise, similarity plot analysis shows that the BFDV complete genome sequences found in T. haematodus are significantly different in areas such as the origin of Rep, the intergenic region between the 3' ends of the Rep and capsid (Cap) genes, and the Cap gene, compared to the BFDVs found in other birds. Furthermore, the BFDV-host coevolution analysis clarifies that the TimeTree of the evolution of various Psittaciformes bird species is the coevolution of the BFDV complete genome/Rep gene/Rep protein/Cap gene/Cap protein sequences found in the respective bird species. To our best knowledge, it is essential to note that no research has yet provided conclusive scientific evidence or experimental evidence that BFDVs detected from Trichoglossus sp. can infect other bird species. Therefore, it can be expected that the BFDVs found in the exotic bird in India will not infect Indian Psittaciformes. However, we hope that large-scale surveillance of BFDV in Indian birds will help determine the BFDV genome present in Indian birds and take further action.
Collapse
Affiliation(s)
| | - Kumaresan Nagarajan
- Department of Veterinary Pathology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Chennai, India
| |
Collapse
|
7
|
Franzo G, Dundon WG, De Villiers M, De Villiers L, Coetzee LM, Khaiseb S, Cattoli G, Molini U. Phylodynamic and phylogeographic reconstruction of beak and feather disease virus epidemiology and its implications for the international exotic bird trade. Transbound Emerg Dis 2022; 69:e2677-e2687. [PMID: 35695014 PMCID: PMC9795873 DOI: 10.1111/tbed.14618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/21/2022] [Accepted: 06/05/2022] [Indexed: 12/30/2022]
Abstract
Beak and feather disease virus (BFDV) infects domestic and wild psittacine species and is able to cause progressive beak, claw and feather malformation and necrosis. In addition to having an impact on the health and welfare of domesticated birds, BFDV represents a significant threat to wild endangered species. Understanding the epidemiology, dynamics, viral migration rate, interaction between wild and domestic animals and the effect of implemented control strategies is fundamental in controlling the spread of the disease. With this in mind, a phylodynamic and phylogeographic analysis has been performed on a database of more than 400 replication-associated protein (Rep) gene (ORF1) sequences downloaded from Genbank including some recently generated sequences from fifteen samples collected in Namibia. The results allowed us to reconstruct the variation of viral population size and demonstrated the effect of enforced international bans on these dynamics. A good correlation was found between viral migration rate and the intensity of animal trade between regions over time. A dominant flux of viral strains was observed from wild to domestic populations, highlighting the directionality of viral transmission and the risk associated with the capturing and trade of wild birds. Nevertheless, the flow of viruses from domestic to wild species was not negligible and should be considered as a threat to biodiversity. Therefore, considering the strong relationship demonstrated in this study between animal trade and BFDV viral fluxes more effort should be made to prevent contact opportunities between wild and domestic populations from different countries in order to control disease spread.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal MedicineProduction and HealthUniversity of PadovaViale dell'UniversitàLegnaroItaly
| | - William G. Dundon
- Animal Production and Health LaboratoryAnimal Production and Health SectionJoint FAO/IAEA DivisionDepartment of Nuclear Sciences and ApplicationsInternational Atomic Energy AgencyViennaAustria
| | - Mari De Villiers
- School of Veterinary MedicineFaculty of Health Sciences and Veterinary MedicineUniversity of NamibiaNeudamm CampusWindhoekNamibia
| | - Lourens De Villiers
- School of Veterinary MedicineFaculty of Health Sciences and Veterinary MedicineUniversity of NamibiaNeudamm CampusWindhoekNamibia
| | | | | | - Giovanni Cattoli
- Animal Production and Health LaboratoryAnimal Production and Health SectionJoint FAO/IAEA DivisionDepartment of Nuclear Sciences and ApplicationsInternational Atomic Energy AgencyViennaAustria
| | - Umberto Molini
- School of Veterinary MedicineFaculty of Health Sciences and Veterinary MedicineUniversity of NamibiaNeudamm CampusWindhoekNamibia,Central Veterinary Laboratory (CVL)WindhoekNamibia
| |
Collapse
|
8
|
Detection of aves polyomavirus 1 (APyV) and beak and feather disease virus (BFDV) in exotic and native Brazilian Psittaciformes. Braz J Microbiol 2022; 53:1665-1673. [PMID: 35767215 DOI: 10.1007/s42770-022-00785-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022] Open
Abstract
There are several viral diseases in captive birds. Aves polyomavirus 1 (APyV) and beak and feather disease virus (BFDV) are among the most important in Psittaciformes. The occurrence of these agents has been widely described in various parts of the world; however, little is known about these viruses in South America. APyV and BFDV can cause high morbidity with feather alterations and even mortality. Other variable symptoms could appear depending on the host's age and taxonomic group. The aim of this study was to detect APyV and BFDV in samples of captive exotic and native Psittaciformes in Brazil. Samples from 120 birds with clinical signs compatible with APyV and/or BFDV were examined. In total, 57 (47.5%) positive birds were found, of which 21 (17.5%) had APyV and 41 (34.17%) had BFDV. Five animals (4.17%) presented concurrent infection. Phylogenetic analysis showed a divergent APyV strain and a diversity of Brazilian BFDV strains. Our study shows that these viruses are present at a significant frequency in captive exotic and native Psittaciformes in Brazil. This study also highlights the need for constant epidemiologic surveillance to preserve bird biodiversity with a focus on endangered Psittaciformes species.
Collapse
|
9
|
Blanch-Lázaro B, Ribot RF, Berg ML, Alexandersen S, Bennett AT. Ability to detect antibodies to beak and feather disease virus in blood on filter paper decreases with duration of storage. PeerJ 2021; 9:e12642. [PMID: 35036139 PMCID: PMC8697771 DOI: 10.7717/peerj.12642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Background Beak and feather disease virus (BFDV) is a circovirus that infects captive and wild psittacine birds, and is of conservation concern. The haemagglutination inhibition (HI) assay is used to determine antibody titres against BFDV, and the use of dried blood spots (DBS) on filter paper stored at room temperature has been suggested to be an equally valid technique to the use of frozen serum. However, research on other pathogens has found variable results when investigating the longevity of antibodies stored on DBS at room temperature. Consequently, we aimed to test the temporal stability of antibodies to BFDV in DBS samples stored long-term at room temperature. A further goal was to add to the current knowledge of antibody response to naturally acquired BFDV infection in crimson rosellas (Platycercus elegans). Methods Blood was collected from wild P. elegans in Victoria, Australia, that had been live-trapped (n = 9) or necropsied (n = 11). BFDV virus load data were obtained from blood stored in ethanol by real-time quantitative PCR (qPCR); antibody titres were obtained by HI assay from either DBS or serum samples, which had been collected concurrently. All HI assays were performed commercially by the Veterinary Diagnostic Laboratory (VDL) in Charles Sturt University, Australia, who were blind to BFDV blood status. Results HI titres from DBS stored at room temperature declined significantly over time (~80 weeks). By contrast, frozen serum samples assayed after 80 weeks in storage all had high HI titres, only varying up to one dilution step from the initial HI titres obtained from DBS at 3–6 weeks after sampling. Weak HI titres from DBS samples all came back negative when the test was repeated only nine weeks later. Novel high HI titres were reported in P. elegans, and while most birds with high antibody titres had corresponding negative qPCR results, a single subadult presented with high HI titres and virus load simultaneously. Conclusion Detection of antibodies on filter paper stored at room temperature decreases over time, increasing the chances of false negatives in these samples, and in repeated testing of samples with weak HI titres. Consequently, serum should be the preferred sample type to use for seroepidemiological studies on BFDV in parrots and other bird species. When not possible, it may help to store DBS on filter paper at −20 °C or lower. However, prompt testing of DBS samples (e.g., <6 weeks in storage) is recommended pending further research on antibody temporal stability. We also show that P. elegans, especially adults, can produce high antibody titres against BFDV, which may help them resist infection.
Collapse
Affiliation(s)
- Berta Blanch-Lázaro
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria, Australia
| | - Raoul F.H. Ribot
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Mathew L. Berg
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Soren Alexandersen
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
- Barwon Health, Geelong, Victoria, Australia
| | - Andrew T.D. Bennett
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
10
|
Nath BK, Das S, Roby JA, Sarker S, Luque D, Raidal SR, Forwood JK. Structural Perspectives of Beak and Feather Disease Virus and Porcine Circovirus Proteins. Viral Immunol 2020; 34:49-59. [PMID: 33275868 DOI: 10.1089/vim.2020.0097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circoviruses represent a rapidly expanding group of viruses that infect both vertebrate and invertebrate hosts. Members are responsible for diseases of veterinary and economic importance, including postweaning multisystemic wasting syndrome in pigs, and beak and feather disease (BFD) in birds. These viruses are associated with lymphoid depletion and immunosuppressive conditions in infected animals leading to systemic illness. Circoviruses are small nonenveloped DNA viruses containing a single-stranded circular genome, encoding two major proteins: the capsid-associated protein (Cap), comprising the entirety of the viral capsid, and the replication-associated protein (Rep). Cap is the only protein component of the virion and plays crucial roles throughout the virus replication cycle, including viral attachment, cell entry, genome uncoating, and packaging of newly formed viral particles. Rep mediates recognition of replication origin motifs in the viral genome sequence and is responsible for endonuclease activity enabling nicking of the circular DNA and initiation of rolling-circle replication (RCR). Porcine circovirus 2 (PCV2) was the first circovirus capsid structure to be solved at atomic resolution using X-ray crystallography. The structure revealed an assembly comprising 60 monomeric subunits to form virus-like particles. Each Cap monomer harbors a canonical viral jelly roll domain composed of two, four-stranded antiparallel β-sheets. Crystal structures of two distinct macromolecular assemblies from BFD virus Cap were also resolved at high resolution. In these structures, the exposure of the N-terminal arginine-rich motif, responsible for DNA binding and nuclear localization is reversed. Additional structural investigations have also elucidated a PCV2 type-specific neutralizing epitope, and interaction between the PCV2 capsid and polymers such as heparin. In this review, we provide a snapshot of the structural and functional aspects of circovirus proteins.
Collapse
Affiliation(s)
- Babu Kanti Nath
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Shubhagata Das
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Justin A Roby
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Daniel Luque
- Centro Nacional de Microbiología/ISCIII, Majadahonda, Madrid, Spain
| | - Shane R Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, Australia
| |
Collapse
|