1
|
Lee Y, Tuan NM, Lee GJ, Kim B, Park JH, Lee CH. Regulatory Mechanisms Governing the Autophagy-Initiating VPS34 Complex and Its inhibitors. Biomol Ther (Seoul) 2024; 32:723-735. [PMID: 39370737 PMCID: PMC11535298 DOI: 10.4062/biomolther.2024.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 10/08/2024] Open
Abstract
VPS34 is a crucial protein in cells, essential for handling cellular stress through its involvement in autophagy and endocytosis. This protein functions as a Class III phosphatidylinositol 3-kinase, producing phosphatidylinositol 3-phosphate, which is necessary for autophagy and vesicle trafficking. Additionally, VPS34 forms two mutually exclusive complexes, each playing a vital role in autophagy and endocytic sorting. These complexes share common subunits, including VPS15, VPS34, and Beclin 1, with complex I having ATG14 as a specific subunit. Due to its association with various human diseases, regulation of the VPS34 complex I has garnered significant interest, emerging as a potential therapeutic target for drug discovery. Summaries of the structure, function of VPS34 complexes, and developed VPS34 inhibitors have been provided, along with discussions on the regulation mechanism of VPS34, particularly in relation to the initiation complex I of autophagy. This offers valuable insights for treating autophagy-related diseases.
Collapse
Affiliation(s)
- Yongook Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Nguyen Minh Tuan
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Gi Jeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Boram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Jung Ho Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
2
|
Li H, Wen X, Ren Y, Fan Z, Zhang J, He G, Fu L. Targeting PI3K family with small-molecule inhibitors in cancer therapy: current clinical status and future directions. Mol Cancer 2024; 23:164. [PMID: 39127670 DOI: 10.1186/s12943-024-02072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The Phosphatidylinositol-3-kinase (PI3K) family is well-known to comprise three classes of intracellular enzymes. Class I PI3Ks primarily function in signaling by responding to cell surface receptor stimulation, while class II and III are more involved in membrane transport. Under normal physiological conditions, the PI3K signaling network orchestrates cell growth, division, migration and survival. Aberrant activation of the PI3K signaling pathway disrupts cellular activity and metabolism, often marking the onset of cancer. Currently, the Food and Drug Administration (FDA) has approved the clinical use of five class I PI3K inhibitors. These small-molecule inhibitors, which exhibit varying selectivity for different class I PI3K family members, are primarily used in the treatment of breast cancer and hematologic malignancies. Therefore, the development of novel class I PI3K inhibitors has been a prominent research focus in the field of oncology, aiming to enhance potential therapeutic selectivity and effectiveness. In this review, we summarize the specific structures of PI3Ks and their functional roles in cancer progression. Additionally, we critically evaluate small molecule inhibitors that target class I PI3K, with a particular focus on their clinical applications in cancer treatment. Moreover, we aim to analyze therapeutic approaches for different types of cancers marked by aberrant PI3K activation and to identify potential molecular targets amenable to intervention with small-molecule inhibitors. Ultimately, we propose future directions for the development of therapeutic strategies that optimize cancer treatment outcomes by modulating the PI3K family.
Collapse
Affiliation(s)
- Hongyao Li
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Yueting Ren
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Brain Science, Faculty of Medicine, Imperial College, London, SW72AZ, UK
| | - Zhichao Fan
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China.
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China.
| | - Leilei Fu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China.
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
3
|
Llorente A, Loughran RM, Emerling BM. Targeting phosphoinositide signaling in cancer: relevant techniques to study lipids and novel avenues for therapeutic intervention. Front Cell Dev Biol 2023; 11:1297355. [PMID: 37954209 PMCID: PMC10634348 DOI: 10.3389/fcell.2023.1297355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Phosphoinositides serve as essential players in numerous biological activities and are critical for overall cellular function. Due to their complex chemical structures, localization, and low abundance, current challenges in the phosphoinositide field include the accurate measurement and identification of specific variants, particularly those with acyl chains. Researchers are intensively developing innovative techniques and approaches to address these challenges and advance our understanding of the impact of phosphoinositide signaling on cellular biology. This article provides an overview of recent advances in the study of phosphoinositides, including mass spectrometry, lipid biosensors, and real-time activity assays using fluorometric sensors. These methodologies have proven instrumental for a comprehensive exploration of the cellular distribution and dynamics of phosphoinositides and have shed light on the growing significance of these lipids in human health and various pathological processes, including cancer. To illustrate the importance of phosphoinositide signaling in disease, this perspective also highlights the role of a family of lipid kinases named phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks), which have recently emerged as exciting therapeutic targets for cancer treatment. The ongoing exploration of phosphoinositide signaling not only deepens our understanding of cellular biology but also holds promise for novel interventions in cancer therapy.
Collapse
Affiliation(s)
| | | | - Brooke M. Emerling
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, United States
| |
Collapse
|
4
|
Liu Y, Yang Q, Chen S, Li Z, Fu L. Targeting VPS34 in autophagy: An update on pharmacological small-molecule compounds. Eur J Med Chem 2023; 256:115467. [PMID: 37178482 DOI: 10.1016/j.ejmech.2023.115467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
VPS34 is well-known to be the unique member of the class III phosphoinositide 3-kinase (PI3K) family, forming VPS34 complex 1 and complex 2, which are involved in several key physiological processes. Of note, VPS34 complex 1 is an important node of autophagosome generation, which controls T cell metabolism and maintains cellular homeostasis through the autophagic pathway. And, VPS34 complex 2 is involved in endocytosis as well as vesicular transport, and is closely related to neurotransmission, antigen presentation and brain development. Due to the two important biological functions of VPS34, its dysregulation can lead to the development of cardiovascular disease, cancer, neurological disorders, and many types of human diseases by altering normal human physiology. Thus, in this review, we not only summarize the molecular structure and function of VPS34, but demonstrate the relationships between VPS34 and human diseases. Moreover, we further discuss the current small molecule inhibitors targeting VPS34 based upon the structure and function of VPS34, which may provide an insight into the future targeted drug development.
Collapse
Affiliation(s)
- Yuan Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qilin Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zixiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
5
|
Liu Y, Ma J, Wang X, Liu P, Cai C, Han Y, Zeng S, Feng Z, Shen H. Lipophagy-related gene RAB7A is involved in immune regulation and malignant progression in hepatocellular carcinoma. Comput Biol Med 2023; 158:106862. [PMID: 37044053 DOI: 10.1016/j.compbiomed.2023.106862] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/05/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND RAB7A (RAS-related in Brain 7A) is an important member of the RAS oncogene family. However, the correlation between RAB7A and the development and immune infiltration of hepatocellular carcinoma (HCC) has rarely been studied. Here, we studied the role of RAB7A in HCC through bioinformatics analysis, real-world cohort validation, and in vitro experimental exploration. MATERIALS AND METHODS The RAB7A expression level was analyzed through TCGA, HPA and TISIDB databases. TIMER and TISCH were used to analyze the correlation between RAB7A and tumor immune microenvironment. The expression of RAB7A was detected through real-time PCR and western blotting. The cell proliferation was detected by EdU and CCK8. Wound-healing and transwell assays were used to test the invasion and migration ability. Cell cycle distribution and reactive oxygen species (ROS) content were analyzed by flow cytometry. Identification of epithelial-mesenchymal transition (EMT) was performed by immunofluorescence double staining. Immunohistochemistry (IHC) was used to evaluate the correlation between RAB7A and immune checkpoints. RESULTS RAB7A is upregulated in most of the tumor types, and the upregulation of RAB7A is associated with a poorer prognosis in many cancers. The results showed that RAB7A was significantly positively correlated with the infiltration of macrophages and cancer-associated fibroblasts (CAFs), but negatively correlated with M2-type macrophages in most tumors. The single-cell atlas also revealed the distribution and proportion of RAB7A in immune cells of HCC. The in vitro experiments suggested that RAB7A was increased in HCC tissue and cell lines. The knockdown of RAB7A inhibited the activation of the PIK3CA-AKT pathway and suppressed the expression of CDK4, CDK6 and CCNA2. Knockdown of RAB7A induced G0/G1 arrest and ROS accumulation in HCC. In addition, overexpression of RAB7A enhanced migration and invasion by inducing EMT. The real-world cohort showed that the expression level of RAB7A was positively correlated with the expression levels of TGFBR1 and PD-L1. CONCLUSIONS RAB7A may serve as a potential tumor prognostic and immune infiltration-related biomarker, predicting immunotherapy efficacy in certain cancer types, especially in HCC. Besides, RAB7A was a multi-pathway target involved in the malignant progression of HCC.
Collapse
Affiliation(s)
- Yongting Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Jiayao Ma
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Xinwen Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ziyang Feng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
6
|
Targeting Class I-II-III PI3Ks in Cancer Therapy: Recent Advances in Tumor Biology and Preclinical Research. Cancers (Basel) 2023; 15:cancers15030784. [PMID: 36765741 PMCID: PMC9913247 DOI: 10.3390/cancers15030784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K) enzymes, producing signaling phosphoinositides at plasma and intracellular membranes, are key in intracellular signaling and vesicular trafficking pathways. PI3K is a family of eight enzymes divided into three classes with various functions in physiology and largely deregulated in cancer. Here, we will review the recent evidence obtained during the last 5 years on the roles of PI3K class I, II and III isoforms in tumor biology and on the anti-tumoral action of PI3K inhibitors in preclinical cancer models. The dependency of tumors to PI3K isoforms is dictated by both genetics and context (e.g., the microenvironment). The understanding of class II/III isoforms in cancer development and progression remains scarce. Nonetheless, the limited available data are consistent and reveal that there is an interdependency between the pathways controlled by all PI3K class members in their role to promote cancer cell proliferation, survival, growth, migration and metabolism. It is unknown whether this feature contributes to partial treatment failure with isoform-selective PI3K inhibitors. Hence, a better understanding of class II/III functions to efficiently inhibit their positive and negative interactions with class I PI3Ks is needed. This research will provide the proof-of-concept to develop combination treatment strategies targeting several PI3K isoforms simultaneously.
Collapse
|
7
|
Zhang L, Zhu Y, Zhang J, Zhang L, Chen L. Inhibiting Cytoprotective Autophagy in Cancer Therapy: An Update on Pharmacological Small-Molecule Compounds. Front Pharmacol 2022; 13:966012. [PMID: 36034776 PMCID: PMC9403721 DOI: 10.3389/fphar.2022.966012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Autophagy is a self-degradation process in which damaged proteins and organelles are engulfed into autophagosomes for digestion and eventually recycled for cellular metabolism to maintain intracellular homeostasis. Accumulating studies have reported that autophagy has the Janus role in cancer as a tumor suppressor or an oncogenic role to promote the growth of established tumors and developing drug resistance. Importantly, cytoprotective autophagy plays a prominent role in many types of human cancers, thus inhibiting autophagy, and has been regarded as a promising therapeutic strategy for cancer therapy. Here, we focus on summarizing small-molecule compounds inhibiting the autophagy process, as well as further discuss other dual-target small-molecule compounds, combination strategies, and other strategies to improve potential cancer therapy. Therefore, these findings will shed new light on exploiting more small-molecule compounds inhibiting cytoprotective autophagy as candidate drugs for fighting human cancers in the future.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuxuan Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiahui Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Lan Zhang, ; Lu Chen,
| | - Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Lan Zhang, ; Lu Chen,
| |
Collapse
|
8
|
Liu S, Cao X, Wang D, Zhu H. Iron metabolism: State of the art in hypoxic cancer cell biology. Arch Biochem Biophys 2022; 723:109199. [DOI: 10.1016/j.abb.2022.109199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/08/2023]
|
9
|
The Role of Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3 in the Pathogenesis of Human Cancer. Int J Mol Sci 2021; 22:ijms222010964. [PMID: 34681622 PMCID: PMC8535862 DOI: 10.3390/ijms222010964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3), the mammalian ortholog of yeast vesicular protein sorting 34 (Vps34), belongs to the phosphoinositide 3-kinase (PI3K) family. PIK3C3 can phosphorylate phosphatidylinositol (PtdIns) to generate phosphatidylinositol 3-phosphate (PI3P), a phospholipid central to autophagy. Inhibition of PIK3C3 successfully inhibits autophagy. Autophagy maintains cell survival when modifications occur in the cellular environment and helps tumor cells resist metabolic stress and cancer treatment. In addition, PIK3C3 could induce oncogenic transformation and enhance tumor cell proliferation, growth, and invasion through mechanisms independent of autophagy. This review addresses the structural and functional features, tissue distribution, and expression pattern of PIK3C3 in a variety of human tumors and highlights the underlying mechanisms involved in carcinogenesis. The implications in cancer biology, patient prognosis prediction, and cancer therapy are discussed. Altogether, the discovery of pharmacological inhibitors of PIK3C3 could reveal novel strategies for improving treatment outcomes for PIK3C3-mediated human diseases.
Collapse
|