1
|
Johansson R, Jensen L, Barnett CT, Rusaw DF. Quantitative methods used to evaluate balance, postural control, and the fear of falling in lower limb prosthesis users: A systematic review. Prosthet Orthot Int 2023; 47:586-598. [PMID: 37318276 DOI: 10.1097/pxr.0000000000000250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 04/23/2023] [Indexed: 06/16/2023]
Abstract
Problems with balance, postural control, and fear of falling are highly prevalent in lower limb prosthesis users, with much research conducted to understand these issues. The variety of tools used to assess these concepts presents a challenge when interpreting research outcomes. This systematic review aimed to provide a synthesis of quantifiable methods used in the evaluation of balance, postural control, and fear of falling in lower limb prosthesis users with an amputation level at or proximal to the ankle joint. A systematic search was conducted in CINAHL, Medline, AMED, Cochrane, AgeLine, Scopus, Web of Science, Proquest, PsycINFO, PsycArticles, and PubPsych databases followed by additional manual searching via reference lists in the reviewed articles databases. Included articles used quantitative measure of balance or postural control as one of the dependent variables, lower limb prosthesis users as a sample group, and were published in a peer-reviewed journal in English. Relevant assessment questions were created by the investigators to rate the assessment methods used in the individual studies. Descriptive and summary statistics are used to synthesize the results. The search yielded (n = 187) articles assessing balance or postural control (n = 5487 persons in total) and (n = 66) articles assessing fear of falling or balance confidence (n = 7325 persons in total). The most used test to measure balance was the Berg Balance Scale and the most used test to measure fear of falling was the Activities-specific Balance Confidence scale. A large number of studies did not present if the chosen methods were valid and reliable for the lower limb prosthesis users. Among study limitations, small sample size was common.
Collapse
Affiliation(s)
- Robin Johansson
- School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Louise Jensen
- School of Health and Welfare, Jönköping University, Jönköping, Sweden
- Southern Älvsborg Hospital, Borås, Sweden
| | - Cleveland T Barnett
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - David F Rusaw
- School of Health and Welfare, Jönköping University, Jönköping, Sweden
| |
Collapse
|
2
|
Gehlhar R, Tucker M, Young AJ, Ames AD. A Review of Current State-of-the-Art Control Methods for Lower-Limb Powered Prostheses. ANNUAL REVIEWS IN CONTROL 2023; 55:142-164. [PMID: 37635763 PMCID: PMC10449377 DOI: 10.1016/j.arcontrol.2023.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Lower-limb prostheses aim to restore ambulatory function for individuals with lower-limb amputations. While the design of lower-limb prostheses is important, this paper focuses on the complementary challenge - the control of lower-limb prostheses. Specifically, we focus on powered prostheses, a subset of lower-limb prostheses, which utilize actuators to inject mechanical power into the walking gait of a human user. In this paper, we present a review of existing control strategies for lower-limb powered prostheses, including the control objectives, sensing capabilities, and control methodologies. We separate the various control methods into three main tiers of prosthesis control: high-level control for task and gait phase estimation, mid-level control for desired torque computation (both with and without the use of reference trajectories), and low-level control for enforcing the computed torque commands on the prosthesis. In particular, we focus on the high- and mid-level control approaches in this review. Additionally, we outline existing methods for customizing the prosthetic behavior for individual human users. Finally, we conclude with a discussion on future research directions for powered lower-limb prostheses based on the potential of current control methods and open problems in the field.
Collapse
Affiliation(s)
- Rachel Gehlhar
- Department of Mechanical and Civil Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, 91125, CA, USA
| | - Maegan Tucker
- Department of Mechanical and Civil Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, 91125, CA, USA
| | - Aaron J Young
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Avenue, Atlanta, 30332, GA, USA
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, North Avenue, Atlanta, 30332, GA, USA
| | - Aaron D Ames
- Department of Mechanical and Civil Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, 91125, CA, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, 1200 E. California Blvd., Pasadena, 91125, CA, USA
| |
Collapse
|
3
|
Kreter N, Lybbert C, Gordon KE, Fino PC. The effects of physical and temporal certainty on human locomotion with discrete underfoot perturbations. J Exp Biol 2022; 225:jeb244509. [PMID: 36124619 PMCID: PMC9659331 DOI: 10.1242/jeb.244509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022]
Abstract
Foot placement can be selected to anticipate upcoming perturbations, but it is unclear how this anticipatory strategy is influenced by available response time or precise knowledge of the perturbation's characteristics. This study investigates anticipatory and reactive locomotor strategies for repeated underfoot perturbations with varying levels of temporal certainty, physical certainty, and available response time. Thirteen healthy adults walked with random underfoot perturbations from a mechanized shoe. Temporal certainty was challenged by presenting the perturbations with or without warning. Available response time was challenged by adjusting the timing of the warning before the perturbation. Physical certainty was challenged by making perturbation direction (inversion or eversion) unpredictable for certain conditions. Linear-mixed effects models assessed the effect of each condition on the percentage change of margin of stability and step width. For perturbations with one stride or less of response time, we observed few changes to step width or margin of stability. As response time increased to two strides, participants adopted wider steps in anticipation of the perturbation (P=0.001). Physical certainty had little effect on gait for the step of the perturbation, but participants recovered normal gait sooner when the physical nature of the perturbation was predictable (P<0.001). Despite having information about the timing and direction of upcoming perturbations, individuals do not develop perturbation-specific feedforward strategies. Instead, they use feedback control to recover normal gait after a perturbation. However, physical certainty appears to make the feedback controller more efficient and allows individuals to recover normal gait sooner.
Collapse
Affiliation(s)
- Nicholas Kreter
- Department of Health and Kinesiology, University of Utah, 250 South 1850 East, Salt Lake City, UT 84112, USA
| | - Carter Lybbert
- Department of Health and Kinesiology, University of Utah, 250 South 1850 East, Salt Lake City, UT 84112, USA
| | - Keith E. Gordon
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite. 1100, Chicago, IL 60611, USA
| | - Peter C. Fino
- Department of Health and Kinesiology, University of Utah, 250 South 1850 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Lee IC, Liu M, Lewek MD, Hu X, Filer WG, Huang H. Toward Safe Wearer-Prosthesis Interaction: Evaluation of Gait Stability and Human Compensation Strategy Under Faults in Robotic Transfemoral Prostheses. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2773-2782. [PMID: 36136925 DOI: 10.1109/tnsre.2022.3208778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although advanced wearable robots can assist human wearers, their internal faults (i.e., sensors or control errors) also pose a challenge. To ensure safe wearer-robot interactions, how internal errors by the prosthesis limb affect the stability of the user-prosthesis system, and how users react and compensate for the instability elicited by internal errors are imperative. The goals of this study were to 1) systematically investigate the biomechanics of a wearer-robot system reacting to internal errors induced by a powered knee prosthesis (PKP), and 2) quantify the error tolerable bound that does not affect the user's gait stability. Eight non-disabled participants and two unilateral transfemoral amputees walked on a pathway wearing a PKP, as the controller randomly switched the control parameters to disturbance parameters to mimic the errors caused by locomotion mode misrecognition. The size of prosthesis control errors was systematically varied to determine the error tolerable bound that disrupted gait stability. The effect of the error was quantified based on the 1) mechanical change described by the angular impulse applied by the PKP, and 2) overall gait instability quantified using human perception, angular momentum, and compensatory stepping. The results showed that the error tolerable bound is dependent on the gait phase and the direction of torque change. Two balance recovery strategies were also observed to allow participants to successful respond to the induced errors. The outcomes of this study may assist the future design of an auto-tuning algorithm, volitionally-controlled powered prosthetic legs, and training of gait stability.
Collapse
|
5
|
Hayami N, Williams HE, Shibagaki K, Vette AH, Suzuki Y, Nakazawa K, Nomura T, Milosevic M. Development and Validation of a Closed-Loop Functional Electrical Stimulation-Based Controller for Gait Rehabilitation Using a Finite State Machine Model. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1642-1651. [PMID: 35709114 DOI: 10.1109/tnsre.2022.3183571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional electrical stimulation (FES) can be used to initiate lower limb muscle contractions and has been widely applied in gait rehabilitation. Establishing the correct timing of FES activation during each phase of the gait (walking) cycle remains challenging as most FES systems rely on open-loop control, whereby the controller receives no feedback about joint kinematics and instead relies on predetermined/timed muscle stimulation. The objective of this study was to develop and validate a closed-loop FES-based control solution for gait rehabilitation using a finite state machine (FSM) model. A two-phased study approach was taken: (1) Experimentally-Informed Study: A neuromuscular-derived FSM model was developed to drive closed-loop FES-based control for gait rehabilitation. The finite states were determined using electromyography and joint kinematics data of 12 non-disabled adults, collected during treadmill walking. The gait cycles were divided into four states, namely: swing-to-stance, push off, pre-swing, and toe up. (2) Simulation Study: A closed-loop FES-based control solution that employed the resulting FSM model, was validated through comparisons of neuro-musculo-skeletal computer simulations of impaired versus healthy gait. This closed-loop controller yielded steadier simulated impaired gait, in comparison to an open-loop alternative. The simulation results confirmed that accurate timing of FES activation during the gait cycle, as informed by kinematics data, is important to natural gait retraining. The closed-loop FES-based solution, introduced in this study, contributes to the repository of gait rehabilitation control options and offers the advantage of being simplistic to implement. Furthermore, this control solution is expected to integrate well with powered exoskeleton technologies.
Collapse
|
6
|
Olenšek A, Zadravec M, Burger H, Matjačić Z. Dynamic balancing responses in unilateral transtibial amputees following outward-directed perturbations during slow treadmill walking differ considerably for amputated and non-amputated side. J Neuroeng Rehabil 2021; 18:123. [PMID: 34332595 PMCID: PMC8325816 DOI: 10.1186/s12984-021-00914-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to disrupted motor and proprioceptive function, lower limb amputation imposes considerable challenges associated with balance and greatly increases risk of falling in presence of perturbations during walking. The aim of this study was to investigate dynamic balancing responses in unilateral transtibial amputees when they were subjected to perturbing pushes to the pelvis in outward direction at the time of foot strike on their non-amputated and amputated side during slow walking. METHODS Fourteen subjects with unilateral transtibial amputation and nine control subjects participated in the study. They were subjected to perturbations that were delivered to the pelvis at the time of foot strike of either the left or right leg. We recorded trajectories of center of pressure and center of mass, durations of in-stance and stepping periods as well as ground reaction forces. Statistical analysis was performed to determine significant differences in dynamic balancing responses between control subjects and subjects with amputation when subjected to outward-directed perturbation upon entering stance phases on their non-amputated or amputated sides. RESULTS When outward-directed perturbations were delivered at the time of foot strike of the non-amputated leg, subjects with amputation were able to modulate center of pressure and ground reaction force similarly as control subjects which indicates application of in-stance balancing strategies. On the other hand, there was a complete lack of in-stance response when perturbations were delivered when the amputated leg entered the stance phase. Subjects with amputations instead used the stepping strategy and adjusted placement of the non-amputated leg in the ensuing stance phase to make a cross-step. Such response resulted in significantly larger displacement of center of mass. CONCLUSIONS Results of this study suggest that due to the absence of the COP modulation mechanism, which is normally supplied by ankle motor function, people with unilateral transtibial amputation are compelled to choose the stepping strategy over in-stance strategy when they are subjected to outward-directed perturbation on the amputated side. However, the stepping response is less efficient than in-stance response.
Collapse
Affiliation(s)
- Andrej Olenšek
- University Rehabilitation Institute, Linhartova 51, 1000, Ljubljana, Slovenia.
| | - Matjaž Zadravec
- University Rehabilitation Institute, Linhartova 51, 1000, Ljubljana, Slovenia
| | - Helena Burger
- University Rehabilitation Institute, Linhartova 51, 1000, Ljubljana, Slovenia
| | - Zlatko Matjačić
- University Rehabilitation Institute, Linhartova 51, 1000, Ljubljana, Slovenia
| |
Collapse
|