1
|
Will PA, Taqatqeh F, Fricke F, Berner JE, Lindenblatt N, Kneser U, Hirche C. Tissue-engineered cellulose tubes for microvascular and lymphatic reconstruction: A translational and feasibility study. J Plast Reconstr Aesthet Surg 2024; 97:200-211. [PMID: 39168030 DOI: 10.1016/j.bjps.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 04/07/2024] [Accepted: 05/24/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Lymphedema microsurgery is an emerging treatment modality, with dissimilar long-term outcomes. One of the main technical challenges in lymphatic microsurgery is the identification and availability of suitable donor vessels for anastomosis. Tissue engineering using biomaterials has demonstrated promise in addressing vessel quality issues in other fields, but its application in microsurgery is still limited. METHODS Decellularized cellulose tubes were developed and bioengineered by decellularizing stems of Taraxacum-Ruderalia. The microscopic structure, mechanical properties, and residual DNA content of the cellulose tubes were evaluated. Human and murine skin fibroblasts and dermal lymphatic endothelial cells were isolated and cultured for recellularization studies. Biocompatibility, proliferative capacity, and ex-vivo endothelialization of the cellulose tubes were assessed as potential interposition grafts. Finally, the engineered cellulose tubes were assessed as interposing xenografts for lymphovenous anastomoses (LVA) in an ex-vivo swine limb model. RESULTS The decellularized cellulose tubes exhibited a suitable microscopic structure, mechanical properties, and low residual DNA content. The tubes showed adequate biocompatibility, supported cell proliferation, and facilitated spontaneous ex-vivo endothelialization of lymphatic endothelial cells. In the swine limb model, LVA using the engineered cellulose tubes was successfully performed. CONCLUSION This translational study presents the use of decellularized cellulose tubes as an adjunct for micro and supermicrosurgical reconstruction. The developed tubes demonstrated favorable structural, mechanical, and biocompatible properties, making them a potential candidate for improving long-term outcomes in lymphedema surgical treatment. The next translational step would be trialing the obtained tubes in a microsurgical in-vivo model.
Collapse
Affiliation(s)
- P A Will
- Department of Plastic and Hand Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre BG Klinik Ludwigshafen, Ludwigshafen, Germany; Plastic Surgery and Hand Surgery, University Heidelberg, Heidelberg, Germany.
| | - F Taqatqeh
- Department of Plastic and Hand Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - F Fricke
- Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - J E Berner
- Kellogg College, University of Oxford, Oxford, United Kingdom; Department of Plastic Surgery, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - N Lindenblatt
- Department of Plastic Surgery and Hand Surgery, Lymphatic Network of Excellence, University Hospital Zurich, Zurich, Switzerland
| | - U Kneser
- Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre BG Klinik Ludwigshafen, Ludwigshafen, Germany; Plastic Surgery and Hand Surgery, University Heidelberg, Heidelberg, Germany
| | - C Hirche
- Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre BG Klinik Ludwigshafen, Ludwigshafen, Germany; Plastic Surgery and Hand Surgery, University Heidelberg, Heidelberg, Germany; Department of Plastic, Hand, and Reconstructive Microsurgery, Hand-Trauma and Replantation Center, BG Unfallklinik Frankfurt am Main, Affiliated Hospital of Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Will P, Dragu A, Zuther J, Heil J, Chang DH, Traber J, Hirche C. [Evidence of modern diagnostic, conservative, and surgical therapy of secondary lymphoedema]. HANDCHIR MIKROCHIR P 2024; 56:291-300. [PMID: 38914123 DOI: 10.1055/a-2322-1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Secondary lymphoedema (SL) is one of the most common and, at the same time, most significant consequences and complications of modern oncological therapy. Although a thorough patient history and physical examination are sufficient to substantiate a suspicion, it is essential to perform functional imaging of the lymphatic system for a targeted diagnosis and determination of severity. For this purpose, techniques such as MR and ICG lymphography as well as ultra-high-frequency ultrasound examinations have been developed and validated in recent years. The selective use of these techniques has allowed for individualized indications and successful stage-dependent treatment using (super)microsurgical techniques to restore regional lymphatic drainage in the context of intensified conservative therapy. METHOD Systematic review of the literature on the diagnosis and treatment of SL with subsequent analysis and classification of the results into evidence levels according to the Oxford Centre for Evidence-Based Medicine and the GRADE Scale. RESULTS The established and validated diagnosis of SL includes imaging (ICG fluorescence lymphography, MR lymphography and Tc-99 functional lymphoscintigraphy) in case of a clinical suspicion and in high-risk patients. Complex physical decongestion therapy (CPE) is superior to physical therapy or compression alone. (Super)microsurgery of SL allows for a postoperative reduction in the frequency of CPE, a reduction of erysipelas rates, a volume reduction of the lymphomatous extremity and, if carried out prophylactically, a lower incidence of SL. Suction-assited lipectomy can produce long-term, stable reductions in circumference and an improvement in quality of life. CONCLUSION Patients with SL benefit from conservative therapy with regular re-evaluation. Patients with a high risk for SL or with clinical deterioration or persistent symptoms under guideline-based conservative therapy can benefit from (super)microsurgical therapy after an individualized functional diagnostic evaluation of the lymphatic system. Excisional dermolipectomies or lympholiposuctions are available and effective for advanced and refractory stages.
Collapse
Affiliation(s)
- Patrick Will
- Klinik für Plastische und Handchirurgie, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Adrian Dragu
- Klinik für Plastische und Handchirurgie, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Joachim Zuther
- Lymphatic Unit, Academy of Lymphatic Studies, Sebastian, United States
| | - Jörg Heil
- Brustzentrum Heidelberg, St. Elisabeth Klinik, Heidelberg, Germany
| | - De-Hua Chang
- Klinik für diagnostische und interventionelle Radiologie, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Jürg Traber
- Gefäßchirurgische Klinik, Venenklinik Bellvue Kreuzlingen, Kreuzlingen, Switzerland
| | - Christoph Hirche
- Klinik für Plastische Chirurgie, Hand- und Rekonstruktive Mikrochirurgie, Handtrauma- und Replantationszentrum, BG Unfallklinik Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Spörlein A, Hirche C, Berner JE, Kneser U, Will PA. Characterization of Immune Cell Infiltration and Collagen Type III Disorganization in Human Secondary Lymphedema: A Case-control Study. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5906. [PMID: 38911579 PMCID: PMC11191027 DOI: 10.1097/gox.0000000000005906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/17/2024] [Indexed: 06/25/2024]
Abstract
Background Secondary lymphedema (SL) affects 120 million people globally, posing a lifelong burden for up to 37% of cancer survivors. Chronic inflammation and progressive fibrosis are key drivers of SL, yet detailed characterization of immune cell subpopulations across lymphedema stages is lacking. This study aimed to investigate the immunologic profile of lymphedematous skin and its association with extracellular matrix changes, which could serve as clinical biomarkers or therapeutic targets. Methods This case-control study analyzed the skin from 36 patients with and without SL, using immunofluorescence to quantify T cells, B cells, macrophages, and their subpopulations. Collagen quantity and composition were examined using picrosirius red staining, and mast cell infiltration was assessed with toluidine blue staining. Early and late SL stages were compared to identify histomorphological and immunologic correlates of stage progression. Results We found a predominance of CD4+ T cells and mast cells in SL skin (1.4/mm² versus 1.0/mm², P < 0.01; 1.2/mm² versus 0.2/mm², P < 0.0001) and a higher ratio of collagen III to collagen I fibers (51.6% versus 75.0%, P < 0.001). M2 macrophages were more abundant in late-stage than in early-stage lymphedema (1.7/mm² versus 1.0/mm², P = 0.02). Conclusions This study demonstrated a shift toward CD4+ T cell and mast cell infiltration in SL skin, correlating with extracellular matrix disorganization and an altered collagen III/I ratio. These findings enhance our understanding of the cellular and morphological changes in SL, potentially guiding future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Andreas Spörlein
- From the Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG Unfallklinik Ludwigshafen, University of Heidelberg, Ludwigshafen am Rhein, Germany
- Department of Otorhinolaryngology—Head and Neck Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Hirche
- From the Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG Unfallklinik Ludwigshafen, University of Heidelberg, Ludwigshafen am Rhein, Germany
- Department of Plastic, Hand, and Reconstructive Microsurgery, BG Unfallklinik Frankfurt am Main, Affiliated Hospital of Goethe-University, Frankfurt am Main, Germany
| | - Juan Enrique Berner
- Department of Plastic Surgery, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
- Kellogg College, University of Oxford, Oxford, United Kingdom
| | - Ulrich Kneser
- From the Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG Unfallklinik Ludwigshafen, University of Heidelberg, Ludwigshafen am Rhein, Germany
| | - Patrick A. Will
- From the Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG Unfallklinik Ludwigshafen, University of Heidelberg, Ludwigshafen am Rhein, Germany
- Department of Plastic and Hand Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TU University Dresden, Dresden, Germany
| |
Collapse
|
4
|
Morita Y, Sakata N, Nishimura M, Kawakami R, Shimizu M, Yoshimatsu G, Sawamoto O, Matsumoto S, Wada H, Kodama S. Efficacy of Neonatal Porcine Bone Marrow-Derived Mesenchymal Stem Cell Xenotransplantation for the Therapy of Hind Limb Lymphedema in Mice. Cell Transplant 2024; 33:9636897241260195. [PMID: 38867486 PMCID: PMC11179447 DOI: 10.1177/09636897241260195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Lymphedema is an intractable disease with few effective therapeutic options. Autologous mesenchymal stem cell (MSC) transplantation is a promising therapy for this disease. However, its use is limited by the cost and time for preparation. Recently, xenotransplantation of porcine MSCs has emerged as an alternative to autologous MSC transplantation. In this study, we aimed to clarify the usefulness of neonatal porcine bone marrow-derived MSC (NpBM-MSC) xenotransplantation for the treatment of lymphedema. One million NpBM-MSCs were xenotransplanted into the hind limbs of mice with severe lymphedema (MSC transplantation group). The therapeutic effects were assessed by measuring the femoral circumference, the volume of the hind limb, the number and diameter of lymphatic vessels in the hind limb, and lymphatic flow using a near-infrared fluorescence (NIRF) imaging system. We compared the effects using mice with lymphedema that did not undergo NpBM-MSC transplantation (negative control group). The condition of the transplanted NpBM-MSCs was also evaluated histologically. The femoral circumference and volume of the hind limb had been normalized by postoperative day (POD) 14 in the MSC transplantation group, but not in the negative control group (P = 0.041). NIRF imaging revealed that lymphatic flow had recovered in the MSC transplantation group by POD 14, as shown by an increase in luminance in the hind limb. Histological assessment also showed that the xenotransplantation of NpBM-MSC increased the proliferation of lymphatic vessels, but they had been rejected by POD 14. The xenotransplantation of NpBM-MSCs is an effective treatment for lymphedema, and this is mediated through the promotion of lymphangiogenesis.
Collapse
Affiliation(s)
- Yuichi Morita
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Masuhiro Nishimura
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Japan
| | - Ryo Kawakami
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Masayuki Shimizu
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Osamu Sawamoto
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Japan
| | - Shinichi Matsumoto
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Japan
| | - Hideichi Wada
- Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
5
|
Morita Y, Sakata N, Kawakami R, Shimizu M, Yoshimatsu G, Wada H, Kodama S. Establishment of a Simple, Reproducible, and Long-lasting Hind Limb Animal Model of Lymphedema. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e5243. [PMID: 37691702 PMCID: PMC10484367 DOI: 10.1097/gox.0000000000005243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023]
Abstract
Background Lymphedema is an intractable disease for which there is currently no established curative therapy. A reliable and long-lasting lymphedema model is essential for development of better treatments. In this study, we aimed to establish a simple, reproducible and long-lasting mouse model of lymphedema. Methods Our model is characterized by a combination of a circumferential skin incision in the femoral region, complete dissection of regional lymph nodes, and ablation of the inguinal route in the femoral region. The characteristics of the lymphedema were evaluated and compared with those of two other models. One of these models involved dissection of the subiliac, popliteal, and sciatic lymph nodes (model A) and the other excision of the subiliac, popliteal, and sciatic lymph nodes with cauterization of lymphatic vessels and closure without a skin excision (model B). Results Although the lymphedema in models A and B resolved spontaneously, that in the new model lasted for a month with increases in femoral circumference and hind limb volume, thickening of the skin, especially subcutaneous tissue, and congestion of peripheral lymphatic vessels. Furthermore, this model could be used for assessing the therapeutic effects of syngeneic mesenchymal stem cell transplantation. The average operation time for the new model was 14.4 ± 1.3 minutes. Conclusion Long-lasting lymphedema can be achieved by our new model, making it suitable for assessing therapies for lymphedema.
Collapse
Affiliation(s)
- Yuichi Morita
- From the Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Naoaki Sakata
- From the Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Ryo Kawakami
- From the Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Masayuki Shimizu
- From the Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Gumpei Yoshimatsu
- From the Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Hideichi Wada
- Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Shohta Kodama
- From the Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
6
|
Nikolaev VV, Trimassov IA, Amirchanov DS, Shirshin EA, Krivova NA, Beliaeva SA, Sandykova EA, Kistenev YV. An Evaluation of Lymphedema Using Optical Coherence Tomography: A Rat Limb Model Approach. Diagnostics (Basel) 2023; 13:2822. [PMID: 37685360 PMCID: PMC10486677 DOI: 10.3390/diagnostics13172822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Lymphedema is a pathology caused by poor lymphatic flow which may lead to complete disability. Currently, precise, non-invasive techniques for quantifying lymphedema are lacking. In this paper, the results of an in vivo assessment of lymphedema via a developed small-animal model using the hindlimbs of rats and an optical coherence tomography (OCT) technique are presented. This model of lymphedema was based on a surgical lymph node resection and subsequent two-step X-ray exposure. The development of lymphedema was verified via the histological examination of tissue biopsies. The properties of the lymphedematous skin were analyzed in vivo and compared with healthy skin via OCT. The main differences observed were (1) a thickening of the stratum corneum layer, (2) a thinning of the viable epidermis layer, and (3) higher signal attenuation in the dermis layer of the lymphedematous skin. Based on the distribution of the OCT signal's intensity in the skin, a machine learning algorithm was developed which allowed for a classification of normal and lymphedematous tissue sites with an accuracy of 90%. The obtained results pave the way for in vivo control over the development of lymphedema.
Collapse
Affiliation(s)
- V. V. Nikolaev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36, Lenin Ave., Tomsk 634050, Russia; (V.V.N.); (I.A.T.); (D.S.A.); (N.A.K.); (S.A.B.); (E.A.S.)
| | - I. A. Trimassov
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36, Lenin Ave., Tomsk 634050, Russia; (V.V.N.); (I.A.T.); (D.S.A.); (N.A.K.); (S.A.B.); (E.A.S.)
| | - D. S. Amirchanov
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36, Lenin Ave., Tomsk 634050, Russia; (V.V.N.); (I.A.T.); (D.S.A.); (N.A.K.); (S.A.B.); (E.A.S.)
| | - E. A. Shirshin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - N. A. Krivova
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36, Lenin Ave., Tomsk 634050, Russia; (V.V.N.); (I.A.T.); (D.S.A.); (N.A.K.); (S.A.B.); (E.A.S.)
| | - S. A. Beliaeva
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36, Lenin Ave., Tomsk 634050, Russia; (V.V.N.); (I.A.T.); (D.S.A.); (N.A.K.); (S.A.B.); (E.A.S.)
| | - E. A. Sandykova
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36, Lenin Ave., Tomsk 634050, Russia; (V.V.N.); (I.A.T.); (D.S.A.); (N.A.K.); (S.A.B.); (E.A.S.)
| | - Yu. V. Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36, Lenin Ave., Tomsk 634050, Russia; (V.V.N.); (I.A.T.); (D.S.A.); (N.A.K.); (S.A.B.); (E.A.S.)
| |
Collapse
|
7
|
Choi J, Lee K, Kim J, Jeong W, Jo T, Lee HW, Park YS, Park SW. Thyroid Hormone Ameliorates Lymphedema by Suppressing Adipogenesis in a Murine Lymphedema Model. Lymphat Res Biol 2022; 20:585-592. [PMID: 35333603 DOI: 10.1089/lrb.2021.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background: Exogenous supplementation of thyroid hormone could inhibit excessive fat deposition in lymphedema tissue by suppressing adipogenesis. Methods and Results: Cell viability, adipogenic differentiation, and mRNA expression were measured in 3T3-L1 preadipocytes treated with L-thyroxine. Twelve mice were divided into control and L-thyroxine groups. Two weeks after lymphedema was surgically induced, the experimental mice were fed L-thyroxine for 4 weeks. Tail volume and body weight were measured, and 6 weeks after the surgery, tail skin and subcutaneous tissue were harvested for histopathologic examination and protein isolation. In 3T3-L1 cells, treatment with 10-500 μM L-thyroxine did not affect cell viability. Eight days after induction of adipogenic differentiation, lipid accumulation decreased significantly in the 50 and 100 μM L-thyroxine groups (p < 0.001). mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), and fatty acid-binding protein 4 (FABP4) decreased significantly in the 100 μM L-thyroxine group compared with the control group (p = 0.017). Lymphedema tails treated with L-thyroxine exhibited decreased volume (p = 0.028) and thickness of dermal and subcutaneous tissue (p = 0.01) and increased vascular endothelial growth factor-C protein expression (p = 0.017) compared with the control. Conclusion: Thyroid hormone therapy inhibits the adipogenesis of 3T3-L1 cells in vitro and decreases the volume of murine lymphedema tail in vivo. These findings suggest that thyroid hormone therapy could be used to treat lymphedema.
Collapse
Affiliation(s)
- Jaehoon Choi
- Department of Plastic and Reconstructive Surgery, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Kanghee Lee
- Department of Plastic and Reconstructive Surgery, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Junhyung Kim
- Department of Plastic and Reconstructive Surgery, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Woonhyeok Jeong
- Department of Plastic and Reconstructive Surgery, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Taehee Jo
- Department of Plastic and Reconstructive Surgery, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hyoun Wook Lee
- Department of Pathology, Sungkyunkwan University School of Medicine, Samsung Changwon Hospital, Changwon, Republic of Korea
| | - Young Sook Park
- Department of Physical Medicine and Rehabilitation, Sungkyunkwan University School of Medicine, Samsung Changwon Hospital, Changwon, Republic of Korea
| | - Sang Woo Park
- Department of Plastic and Reconstructive Surgery, Sungkyunkwan University School of Medicine, Samsung Changwon Hospital, Changwon, Republic of Korea
| |
Collapse
|
8
|
Nurlaila I, Roh K, Yeom CH, Kang H, Lee S. Acquired lymphedema: Molecular contributors and future directions for developing intervention strategies. Front Pharmacol 2022; 13:873650. [PMID: 36386144 PMCID: PMC9640931 DOI: 10.3389/fphar.2022.873650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/13/2022] [Indexed: 08/05/2023] Open
Abstract
Lymphedema is a debilitating chronic disease that mostly develops as an adverse reaction to cancer treatment modalities such as chemotherapy, surgery, and radiotherapy. Lymphedema also appears to be a deteriorating consequence of roundworm infections, as best represented by filariasis. According to its origin, lymphedema is classified as primary lymphedema and acquired lymphedema. The latter is an acquired condition that, hitherto, received a considerably low attention owing to the less number of fatal cases been reported. Notably, despite the low mortality rate in lymphedema, it has been widely reported to reduce the disease-free survival and thus the quality of life of affected patients. Hence, in this review, we focused on acquired lymphedema and orchestration of molecular interplays associated with either stimulation or inhibition of lymphedema development that were, in vast majority, clearly depicted in animal models with their specific and distinct technical approaches. We also discussed some recent progress made in phytochemical-based anti-lymphedema intervention strategies and the specific mechanisms underlying their anti-lymphedema properties. This review is crucial to understand not only the comprehensive aspects of the disease but also the future directions of the intervention strategies that can address the quality of life of affected patients rather than alleviating apparent symptoms only.
Collapse
Affiliation(s)
- Ika Nurlaila
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- Department of Vaccine and Drugs, The National Research and Innovation Agency, Jakarta, Indonesia
| | - Kangsan Roh
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Cardiology and Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Hee Kang
- Humanitas College, Kyung Hee University, Yongin, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
9
|
Hsu JF, Yu RP, Stanton EW, Wang J, Wong AK. Current Advancements in Animal Models of Postsurgical Lymphedema: A Systematic Review. Adv Wound Care (New Rochelle) 2022; 11:399-418. [PMID: 34128396 PMCID: PMC9142133 DOI: 10.1089/wound.2021.0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: Secondary lymphedema is a debilitating disease caused by lymphatic dysfunction characterized by chronic swelling, dysregulated inflammation, disfigurement, and compromised wound healing. Since there is no effective cure, animal model systems that support basic science research into the mechanisms of secondary lymphedema are critical to advancing the field. Recent Advances: Over the last decade, lymphatic research has led to the improvement of existing animal lymphedema models and the establishment of new models. Although an ideal model does not exist, it is important to consider the strengths and limitations of currently available options. In a systematic review adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we present recent developments in the field of animal lymphedema models and provide a concise comparison of ease, cost, reliability, and clinical translatability. Critical Issues: The incidence of secondary lymphedema is increasing, and there is no gold standard of treatment or cure for secondary lymphedema. Future Directions: As we iterate and create animal models that more closely characterize human lymphedema, we can achieve a deeper understanding of the pathophysiology and potentially develop effective therapeutics for patients.
Collapse
Affiliation(s)
- Jerry F. Hsu
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Roy P. Yu
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Eloise W. Stanton
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Jin Wang
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Alex K. Wong
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Correspondence: Division of Plastic Surgery, City of Hope National Medical Center, 1500 E. Duarte Road, Pavillion 2216, Duarte, CA 91010, USA.
| |
Collapse
|
10
|
Hirche C. [Autologous Breast Reconstruction in Conjuction with Lymphatic Microsurgery in Breast Cancer-Related Lymphedema]. HANDCHIR MIKROCHIR P 2022; 54:326-338. [PMID: 35944536 DOI: 10.1055/a-1868-5527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Breast cancer-related lymphedema of the upper extremity is the most significant non-oncological complication of tumour therapy, leading to functional impairment and impacting patients' quality of life. Autologous breast reconstruction per se effectively reduces incidence and stage of lymphedema after breast cancer treatment by surgical angiogenesis. In addition, modern surgical techniques for treating lymphedema are effective in reducing limb volume, circumference and functional impairment, and improving patients' quality of life, body image, integrity and local immunocompetence. Reconstructive surgery, including lymphovenous anastomoses (LVA) and vascularised lymph node transfer (VLNT), have been shown to rearrange or restore lymphatic flow and prevent stage progression. For patients with breast cancer-related lymphedema after mastectomy, autologous breast reconstruction in conjunction with lymphatic microsurgery using VLNT, LVA or a combination of these procedures offers the option of holistic and single-stage restoration in modern senology. Extensive scar release in the axilla is a crucial component of the surgical technique, aiming to prepare the recipient bed for the VLN transplant and to allow for the functional recruitment of remaining lymph vessels of the upper extremity. This article presents the indications, preoperative diagnostic evaluation, surgical techniques and precautions, complications and results of combined lymphatic and breast restoration.
Collapse
Affiliation(s)
- Christoph Hirche
- Abteilung für Plastische, Hand- und Rekonstruktive Mikrochirurgie, Handtrauma- und Replantationszentrum, BG Unfallklinik Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Blei F. Update October 2020. Lymphat Res Biol 2020. [DOI: 10.1089/lrb.2020.29092.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|