1
|
Deck CA, Salger SA, Reynolds HM, Tada MD, Severance ME, Ferket P, Egna HS, Fatema MK, Haque SM, Borski RJ. Nutritional programming in Nile tilapia (Oreochromis niloticus): Effect of low dietary protein on growth and the intestinal microbiome and transcriptome. PLoS One 2023; 18:e0292431. [PMID: 37792787 PMCID: PMC10550151 DOI: 10.1371/journal.pone.0292431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
Nutritional programming is the idea that early nutrient contributions can influence organismal structure or function and is documented in a variety of vertebrates, yet studies in fish are largely lacking. Tilapia are an important foodfish, with global production having increased rapidly since the 1990s. They exhibit high disease-resistance and grow well on formulated feeds which makes them an ideal aquaculture species, however incorporating high quality proteins into feeds can be costly. As feed constitutes 50-70% of total production costs in aquaculture, reducing protein content could curb these costs and increase revenue. Thus, we examined the effects of feeding Nile tilapia (O. niloticus) fry a restricted protein diet for the first 7-21 days on growth, gut microbial flora, and the intestinal transcriptome. Fish were fed either a 25% restricted or 48% control crude protein starter (ST) diet for up to 21 days and then switched to a 25% or 38% control crude protein growout (GO) diet. Fish fed a 25% ST diet for 14 days followed by a 38% GO diet had significantly higher lengths and weights and better feed efficiency than fish fed the control 48% ST and 38% GO diet after 56 days of culture. Growth of fry on the 25% ST, 7-day/38% GO and the 25% ST,7-day/25% GO diets did not differ from the those fed the control protein diets, while fish fed the 25% ST diet for 21 days had significantly lower growth and survival rates. We observed no significant differences in either alpha or beta diversity of the gut microbial flora between diets, however species richness (Shannon Index) was higher in fry fed the 25% protein ST diet regardless of the GO diet. Similarly, fish fed the 25% ST diet for 14 days followed by the 38% GO diet had minimal changes to the intestinal transcriptome relative to fish fed the control 48% ST and 38% GO diet. However, those fed 25% ST and GO diets for the entire 56 days exhibited substantial differences in the gut transcriptome from other groups showing gene expression profiles characteristic of detrimental changes to gut physiology, protein metabolism and immune function. Results suggest protein restriction for up to 14 days early in development leads to enhanced growth and feed efficiency with minimal effects on gut microbes or intestinal function. Protein restriction beyond this period appears detrimental to fish growth and health as underscored by expression of disease related genes and higher mortality rates.
Collapse
Affiliation(s)
- Courtney A. Deck
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Scott A. Salger
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
- School of Sciences, Barton College, Wilson, NC, United States of America
| | - Hannah M. Reynolds
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Michael D. Tada
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Madeline E. Severance
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Peter Ferket
- Department of Poultry Science, North Carolina State University, Raleigh, NC, United States of America
| | - Hillary S. Egna
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, United States of America
| | - Mst. Kaniz Fatema
- Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shahroz M. Haque
- Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Russell J. Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
2
|
Lertwanakarn T, Purimayata T, Luengyosluechakul T, Grimalt PB, Pedrazzani AS, Quintiliano MH, Surachetpong W. Assessment of Tilapia ( Oreochromis spp.) Welfare in the Semi-Intensive and Intensive Culture Systems in Thailand. Animals (Basel) 2023; 13:2498. [PMID: 37570306 PMCID: PMC10416865 DOI: 10.3390/ani13152498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Welfare assessments have risen to prominence in the aquaculture industry, with increasing awareness of their significance among stakeholders in Thailand. In this study, we conducted a welfare assessment of tilapia (Oreochromis spp.) farms in Thailand, focusing on health, environmental, behavioural, and nutritional indicators. Comparing semi-intensive (earthen ponds) and intensive farming practices (cage culture), we found significant differences in the overall health score, particularly at farm F due to a disease outbreak (Kruskal-Wallis, p = 0.01). Skin and fin scores varied across farms, indicating their potential as indicators of tilapia health. Environmental assessments revealed differences in transparency between the two culturing systems (Mann-Whitney, p = 0.02). During the harvesting process, tilapia behaviours indicated poor welfare across all farms. However, no statistically significant difference in overall welfare scores was found between the two culturing systems. Correlations were observed between nutritional, environmental, and health indicators, with negative correlations between fish density and water transparency (r = -0.87, p = 0.02), presence of inhabitants (r = -0.78, p = 0.04), feeding behaviours (r = -0.78, p = 0.04), and swimming behaviours during capture (r = -0.98, p = 0.001). These findings provide valuable insights to enhance tilapia-farming practices and welfare in Thailand.
Collapse
Affiliation(s)
- Tuchakorn Lertwanakarn
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Thitima Purimayata
- Graduate Program in Animal Health and Biomedical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (T.L.)
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Thnapol Luengyosluechakul
- Graduate Program in Animal Health and Biomedical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (T.L.)
| | - Pau Badia Grimalt
- FAI Registered Office Company Address, The Barn, Wytham, Oxford OX2 8QJ, UK;
| | | | | | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Gómez de la Torre Canny S, Nordgård CT, Mathisen AJH, Degré Lorentsen E, Vadstein O, Bakke I. A novel gnotobiotic experimental system for Atlantic salmon ( Salmo salar L.) reveals a microbial influence on mucosal barrier function and adipose tissue accumulation during the yolk sac stage. Front Cell Infect Microbiol 2023; 12:1068302. [PMID: 36817693 PMCID: PMC9929952 DOI: 10.3389/fcimb.2022.1068302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 02/04/2023] Open
Abstract
Gnotobiotic models have had a crucial role in studying the effect that commensal microbiota has on the health of their animal hosts. Despite their physiological and ecological diversity, teleost fishes are still underrepresented in gnotobiotic research. Moreover, a better understanding of host-microbe interactions in farmed fish has the potential to contribute to sustainable global food supply. We have developed a novel gnotobiotic experimental system that includes the derivation of fertilized eggs of farmed and wild Atlantic salmon, and gnotobiotic husbandry of fry during the yolk sac stage. We used a microscopy-based approach to estimate the barrier function of the skin mucus layer and used this measurement to select the derivation procedure that minimized adverse effects on the skin mucosa. We also used this method to demonstrate that the mucus barrier was reduced in germ-free fry when compared to fry colonized with two different bacterial communities. This alteration in the mucus barrier was preceded by an increase in the number of cells containing neutral mucosubstances in the anterior segment of the body, but without changes in the number of cells containing acidic substances in any of the other segments studied along the body axis. In addition, we showed how the microbial status of the fry temporarily affected body size and the utilization of internal yolk stores during the yolk sac stage. Finally, we showed that the presence of bacterial communities associated with the fry, as well as their composition, affected the size of adipose tissue. Fry colonized with water from a lake had a larger visceral adipose tissue depot than both conventionally raised and germ-free fry. Together, our results show that this novel gnotobiotic experimental system is a useful tool for the study of host-microbe interactions in this species of aquacultural importance.
Collapse
Affiliation(s)
| | | | | | | | | | - Ingrid Bakke
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
4
|
Zhang Z, Fan Z, Yi M, Liu Z, Ke X, Gao F, Cao J, Wang M, Chen G, Lu M. Characterization of the core gut microbiota of Nile tilapia (Oreochromis niloticus): indication of a putative novel Cetobacterium species and analysis of its potential function on nutrition. Arch Microbiol 2022; 204:690. [DOI: 10.1007/s00203-022-03301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
5
|
Tu PY, Huang SJ, Rajanbabu V, Wu JL, Chen JY. Comparative transcriptome analysis reveals ectopic delta-5 and delta-6 desaturases enhance protective gene expression upon Vibrio vulnificus challenge in Tilapia (Oreochromis niloticus). BMC Genomics 2021; 22:200. [PMID: 33752587 PMCID: PMC7983300 DOI: 10.1186/s12864-021-07521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
Background Tilapia (Oreochromis niloticus) cultures are frequently infected by Vibrio vulnificus, causing major economic losses to production units. Previously, tilapia expressing recombinant delta-5 desaturase and delta-6 desaturase (D56) were found to be resistant to V. vulnificus infection. In this report, we profile the D56-mediated molecular changes underlying this resistance in tilapia. A comparative transcriptome analysis was performed on V. vulnificus-infected wild-type and D56-transgenic tilapia using Illumina’s sequencing-by-synthesis approach. Gene enrichment analysis on differentially expressed unigenes was performed, and the expression patterns were validated by real-time PCR. Results Comparative transcriptome analysis was performed on RNA-sequence profiles obtained from wild-type and D56-transgenic tilapia at 0, 6 and 24 h post-infection with V. vulnificaus. GO and KEGG gene enrichment analyses showed that D56 regulates several pathways and genes, including fatty acid (FA) metabolism associated, and inflammatory and immune response. Expression of selected FA metabolism-associated, inflammatory and immune responsive genes was validated by qPCR. The inflammatory and immune responsive genes that are modulated by FA-associated D56 likely contribute to the enhanced resistance against V. vulnificus infection in Tilapia. Conclusions Transcriptome profiling and filtering for two-fold change variation showed that 3795 genes were upregulated and 1839 genes were downregulated in D56-transgenic tilapia. These genes were grouped into pathways, such as FA metabolism, FA elongation, FA biosynthesis, biosynthesis of unsaturated FA, FA degradation, inflammation, immune response, and chemokines. FA-associated genes and immune-related genes were modulated by D56 at 6 h and 24 h post infection with V. vulnificus. The expression patterns of FA-related genes, inflammatory genes, antimicrobial peptide genes and immune responsive genes at 0, 3, 6, 12, 24 and 48 h post-infection suggests these genes are involved in the enhanced resistance of D56 transgenic tilapia to V. vulnificus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07521-5.
Collapse
Affiliation(s)
- Pin-Yang Tu
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan, 262, Taiwan
| | - Shin-Jie Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Venugopal Rajanbabu
- Department of Plant Breeding 7 Genetics, Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirapalli, Tamil Nadu, 620027, India
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan, 262, Taiwan. .,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|