1
|
Karwat P, Piotrzkowska-Wroblewska H, Klimonda Z, Dobruch-Sobczak KS, Litniewski J. Monitoring Breast Cancer Response to Neoadjuvant Chemotherapy Using Probability Maps Derived from Quantitative Ultrasound Parametric Images. IEEE Trans Biomed Eng 2024; 71:2620-2629. [PMID: 38557626 DOI: 10.1109/tbme.2024.3383920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Neoadjuvant chemotherapy (NAC) is widely used in the treatment of breast cancer. However, to date, there are no fully reliable, non-invasive methods for monitoring NAC. In this article, we propose a new method for classifying NAC-responsive and unresponsive tumors using quantitative ultrasound. METHODS The study used ultrasound data collected from breast tumors treated with NAC. The proposed method is based on the hypothesis that areas that characterize the effect of therapy particularly well can be found. For this purpose, parametric images of texture features calculated from tumor images were converted into NAC response probability maps, and areas with a probability above 0.5 were used for classification. RESULTS The results obtained after the third cycle of NAC show that the classification of tumors using the traditional method (area under the ROC curve AUC = 0.81-0.88) can be significantly improved thanks to the proposed new approach (AUC = 0.84-0.94). This improvement is achieved over a wide range of cutoff values (0.2-0.7), and the probability maps obtained from different quantitative parameters correlate well. CONCLUSION The results suggest that there are tumor areas that are particularly well suited to assessing response to NAC. SIGNIFICANCE The proposed approach to monitoring the effects of NAC not only leads to a better classification of responses, but also may contribute to a better understanding of the microstructure of neoplastic tumors observed in an ultrasound examination.
Collapse
|
2
|
Dasgupta A, DiCenzo D, Sannachi L, Gandhi S, Pezo RC, Eisen A, Warner E, Wright FC, Look-Hong N, Sadeghi-Naini A, Curpen B, Kolios MC, Trudeau M, Czarnota GJ. Quantitative ultrasound radiomics guided adaptive neoadjuvant chemotherapy in breast cancer: early results from a randomized feasibility study. Front Oncol 2024; 14:1273437. [PMID: 38706611 PMCID: PMC11066296 DOI: 10.3389/fonc.2024.1273437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Background In patients with locally advanced breast cancer (LABC) receiving neoadjuvant chemotherapy (NAC), quantitative ultrasound (QUS) radiomics can predict final responses early within 4 of 16-18 weeks of treatment. The current study was planned to study the feasibility of a QUS-radiomics model-guided adaptive chemotherapy. Methods The phase 2 open-label randomized controlled trial included patients with LABC planned for NAC. Patients were randomly allocated in 1:1 ratio to a standard arm or experimental arm stratified by hormonal receptor status. All patients were planned for standard anthracycline and taxane-based NAC as decided by their medical oncologist. Patients underwent QUS imaging using a clinical ultrasound device before the initiation of NAC and after the 1st and 4th weeks of treatment. A support vector machine-based radiomics model developed from an earlier cohort of patients was used to predict treatment response at the 4th week of NAC. In the standard arm, patients continued to receive planned chemotherapy with the treating oncologists blinded to results. In the experimental arm, the QUS-based prediction was conveyed to the responsible oncologist, and any changes to the planned chemotherapy for predicted non-responders were made by the responsible oncologist. All patients underwent surgery following NAC, and the final response was evaluated based on histopathological examination. Results Between June 2018 and July 2021, 60 patients were accrued in the study arm, with 28 patients in each arm available for final analysis. In patients without a change in chemotherapy regimen (53 of 56 patients total), the QUS-radiomics model at week 4 of NAC that was used demonstrated an accuracy of 97%, respectively, in predicting the final treatment response. Seven patients were predicted to be non-responders (observational arm (n=2), experimental arm (n=5)). Three of 5 non-responders in the experimental arm had chemotherapy regimens adapted with an early initiation of taxane therapy or chemotherapy intensification, or early surgery and ended up as responders on final evaluation. Conclusion The study demonstrates the feasibility of QUS-radiomics adapted guided NAC for patients with breast cancer. The ability of a QUS-based model in the early prediction of treatment response was prospectively validated in the current study. Clinical trial registration clinicaltrials.gov, ID NCT04050228.
Collapse
Affiliation(s)
- Archya Dasgupta
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Daniel DiCenzo
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Sonal Gandhi
- Division of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rossana C. Pezo
- Division of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrea Eisen
- Division of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ellen Warner
- Division of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Frances C. Wright
- Department of Surgical Oncology, Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Nicole Look-Hong
- Department of Surgical Oncology, Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Ali Sadeghi-Naini
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Electrical Engineering and Computer Sciences, Lassonde School of Engineering, York University, Toronto, ON, Canada
| | - Belinda Curpen
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | | | - Maureen Trudeau
- Division of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Gregory J. Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Osapoetra LO, Dasgupta A, DiCenzo D, Fatima K, Quiaoit K, Saifuddin M, Karam I, Poon I, Husain Z, Tran WT, Sannachi L, Czarnota GJ. Quantitative US Delta Radiomics to Predict Radiation Response in Individuals with Head and Neck Squamous Cell Carcinoma. Radiol Imaging Cancer 2024; 6:e230029. [PMID: 38391311 PMCID: PMC10988345 DOI: 10.1148/rycan.230029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Purpose To investigate the role of quantitative US (QUS) radiomics data obtained after the 1st week of radiation therapy (RT) in predicting treatment response in individuals with head and neck squamous cell carcinoma (HNSCC). Materials and Methods This prospective study included 55 participants (21 with complete response [median age, 65 years {IQR: 47-80 years}, 20 male, one female; and 34 with incomplete response [median age, 59 years {IQR: 39-79 years}, 33 male, one female) with bulky node-positive HNSCC treated with curative-intent RT from January 2015 to October 2019. All participants received 70 Gy of radiation in 33-35 fractions over 6-7 weeks. US radiofrequency data from metastatic lymph nodes were acquired prior to and after 1 week of RT. QUS analysis resulted in five spectral maps from which mean values were extracted. We applied a gray-level co-occurrence matrix technique for textural analysis, leading to 20 QUS texture and 80 texture-derivative parameters. The response 3 months after RT was used as the end point. Model building and evaluation utilized nested leave-one-out cross-validation. Results Five delta (Δ) parameters had statistically significant differences (P < .05). The support vector machines classifier achieved a sensitivity of 71% (15 of 21), a specificity of 76% (26 of 34), a balanced accuracy of 74%, and an area under the receiver operating characteristic curve of 0.77 on the test set. For all the classifiers, the performance improved after the 1st week of treatment. Conclusion A QUS Δ-radiomics model using data obtained after the 1st week of RT from individuals with HNSCC predicted response 3 months after treatment completion with reasonable accuracy. Keywords: Computer-Aided Diagnosis (CAD), Ultrasound, Radiation Therapy/Oncology, Head/Neck, Radiomics, Quantitative US, Radiotherapy, Head and Neck Squamous Cell Carcinoma, Machine Learning Clinicaltrials.gov registration no. NCT03908684 Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
| | | | - Daniel DiCenzo
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Kashuf Fatima
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Karina Quiaoit
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Murtuza Saifuddin
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Irene Karam
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Ian Poon
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Zain Husain
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - William T. Tran
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Lakshmanan Sannachi
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Gregory J. Czarnota
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| |
Collapse
|
4
|
Kwon H, Oh S, Kim MG, Kim Y, Jung G, Lee HJ, Kim SY, Bae HM. Artificial Intelligence-Enhanced Quantitative Ultrasound for Breast Cancer: Pilot Study on Quantitative Parameters and Biopsy Outcomes. Diagnostics (Basel) 2024; 14:419. [PMID: 38396457 PMCID: PMC10888332 DOI: 10.3390/diagnostics14040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Traditional B-mode ultrasound has difficulties distinguishing benign from malignant breast lesions. It appears that Quantitative Ultrasound (QUS) may offer advantages. We examined the QUS imaging system's potential, utilizing parameters like Attenuation Coefficient (AC), Speed of Sound (SoS), Effective Scatterer Diameter (ESD), and Effective Scatterer Concentration (ESC) to enhance diagnostic accuracy. B-mode images and radiofrequency signals were gathered from breast lesions. These parameters were processed and analyzed by a QUS system trained on a simulated acoustic dataset and equipped with an encoder-decoder structure. Fifty-seven patients were enrolled over six months. Biopsies served as the diagnostic ground truth. AC, SoS, and ESD showed significant differences between benign and malignant lesions (p < 0.05), but ESC did not. A logistic regression model was developed, demonstrating an area under the receiver operating characteristic curve of 0.90 (95% CI: 0.78, 0.96) for distinguishing between benign and malignant lesions. In conclusion, the QUS system shows promise in enhancing diagnostic accuracy by leveraging AC, SoS, and ESD. Further studies are needed to validate these findings and optimize the system for clinical use.
Collapse
Affiliation(s)
- Hyuksool Kwon
- Laboratory of Quantitative Ultrasound Imaging, Seoul National University Bundang Hospital, Seong-nam 13620, Republic of Korea; (H.K.); (S.O.)
- Imaging Division, Department of Emergency Medicine, Seoul National University Bundang Hospital, Seong-nam 13620, Republic of Korea
| | - Seokhwan Oh
- Laboratory of Quantitative Ultrasound Imaging, Seoul National University Bundang Hospital, Seong-nam 13620, Republic of Korea; (H.K.); (S.O.)
- Electrical Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; (M.-G.K.); (Y.K.); (G.J.); (H.-J.L.); (S.-Y.K.)
| | - Myeong-Gee Kim
- Electrical Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; (M.-G.K.); (Y.K.); (G.J.); (H.-J.L.); (S.-Y.K.)
| | - Youngmin Kim
- Electrical Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; (M.-G.K.); (Y.K.); (G.J.); (H.-J.L.); (S.-Y.K.)
| | - Guil Jung
- Electrical Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; (M.-G.K.); (Y.K.); (G.J.); (H.-J.L.); (S.-Y.K.)
| | - Hyeon-Jik Lee
- Electrical Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; (M.-G.K.); (Y.K.); (G.J.); (H.-J.L.); (S.-Y.K.)
| | - Sang-Yun Kim
- Electrical Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; (M.-G.K.); (Y.K.); (G.J.); (H.-J.L.); (S.-Y.K.)
| | - Hyeon-Min Bae
- Electrical Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; (M.-G.K.); (Y.K.); (G.J.); (H.-J.L.); (S.-Y.K.)
| |
Collapse
|
5
|
Baek J, Basavarajappa L, Margolis R, Arthur L, Li J, Hoyt K, Parker KJ. Multiparametric ultrasound imaging for early-stage steatosis: Comparison with magnetic resonance imaging-based proton density fat fraction. Med Phys 2024; 51:1313-1325. [PMID: 37503961 PMCID: PMC11238269 DOI: 10.1002/mp.16648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND The prevalence of liver diseases, especially steatosis, requires a more convenient and noninvasive tool for liver diagnosis, which can be a surrogate for the gold standard biopsy. Magnetic resonance (MR) measurement offers potential, however ultrasound (US) has better accessibility than MR. PURPOSE This study aims to suggest a multiparametric US approach which demonstrates better quantification and imaging performance than MR imaging-based proton density fat fraction (MRI-PDFF) for hepatic steatosis assessment. METHODS We investigated early-stage steatosis to evaluate our approach. An in vivo (within the living) animal study was performed. Fat inclusions were accumulated in the animal livers by feeding a methionine and choline deficient (MCD) diet for 2 weeks. The animals (n = 19) underwent US and MR imaging, and then their livers were excised for histological staining. From the US, MR, and histology images, fat accumulation levels were measured and compared: multiple US parameters; MRI-PDFF; histology fat percentages. Seven individual US parameters were extracted using B-mode measurement, Burr distribution estimation, attenuation estimation, H-scan analysis, and shear wave elastography. Feature selection was performed, and the selected US features were combined, providing quantification of fat accumulation. The combined parameter was used for visualizing the localized probability of fat accumulation level in the liver; This procedure is known as disease-specific imaging (DSI). RESULTS The combined US parameter can sensitively assess fat accumulation levels, which is highly correlated with histology fat percentage (R = 0.93, p-value < 0.05) and outperforms the correlation between MRI-PDFF and histology (R = 0.89, p-value < 0.05). Although the seven individual US parameters showed lower correlation with histology compared to MRI-PDFF, the multiparametric analysis enabled US to outperform MR. Furthermore, this approach allowed DSI to detect and display gradual increases in fat accumulation. From the imaging output, we measured the color-highlighted area representing fatty tissues, and the fat fraction obtained from DSI and histology showed strong agreement (R = 0.93, p-value < 0.05). CONCLUSIONS We demonstrated that fat quantification utilizing a combination of multiple US parameters achieved higher performance than MRI-PDFF; therefore, our multiparametric analysis successfully combined selected features for hepatic steatosis characterization. We anticipate clinical use of our proposed multiparametric US analysis, which could be beneficial in assessing steatosis in humans.
Collapse
Affiliation(s)
- Jihye Baek
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| | - Lokesh Basavarajappa
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Ryan Margolis
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Leroy Arthur
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Junjie Li
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Kevin J. Parker
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| |
Collapse
|
6
|
Yan D, Li Q, Lin CW, Shieh JY, Weng WC, Tsui PH. Hybrid QUS Radiomics: A Multimodal-Integrated Quantitative Ultrasound Radiomics for Assessing Ambulatory Function in Duchenne Muscular Dystrophy. IEEE J Biomed Health Inform 2024; 28:835-845. [PMID: 37930927 DOI: 10.1109/jbhi.2023.3330578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a neuromuscular disorder that affects ambulatory function. Quantitative ultrasound (QUS) imaging, utilizing envelope statistics, has proven effective in diagnosing DMD. Radiomics enables the extraction of detailed features from QUS images. This study further proposes a hybrid QUS radiomics and explores its value in characterizing DMD. METHODS Patients (n = 85) underwent ultrasound examinations of gastrocnemius through Nakagami, homodyned K (HK), and information entropy imaging. The hybrid QUS radiomics extracted, selected, and integrated the retained features derived from each QUS image for classification of ambulatory function using support vector machine. Nested five fold cross-validation of the data was conducted, with the rotational process repeated 50 times. The performance was assessed by averaging the areas under the receiver operating characteristic curve (AUROC). RESULTS Radiomics enhanced the average AUROC of B-scan, Nakagami, HK, and entropy imaging to 0.790, 0.911, 0.869, and 0.890, respectively. By contrast, the hybrid QUS radiomics using HK and entropy images for diagnosing ambulatory function in DMD patients achieved a superior average AUROC of 0.971 (p < 0.001 compared with conventional radiomics analysis). CONCLUSIONS The proposed hybrid QUS radiomics incorporates microstructure-related backscattering information from various envelope statistics models to effectively enhance the performance of DMD assessment.
Collapse
|
7
|
Jafarpisheh N, Castaneda-Martinez L, Whitson H, Rosado-Mendez IM, Rivaz H. Physics-Inspired Regularized Pulse-Echo Quantitative Ultrasound: Efficient Optimization With ADMM. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1428-1441. [PMID: 37782586 DOI: 10.1109/tuffc.2023.3321250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Pulse-echo quantitative ultrasound (PEQUS), which estimates the quantitative properties of tissue microstructure, entails estimating the average attenuation and the backscatter coefficient (BSC). Growing recent research has focused on the regularized estimation of these parameters. Herein, we make two contributions to this field: first, we consider the physics of the average attenuation and backscattering to devise regularization terms accordingly. More specifically, since the average attenuation gradually alters in different parts of the tissue, while BSC can vary markedly from tissue to tissue, we apply L2 and L1 norms for the average attenuation and the BSC, respectively. Second, we multiply different frequencies and depths of the power spectra with different weights according to their noise levels. Our rationale is that the high-frequency contents of the power spectra at deep regions have a low signal-to-noise ratio (SNR). We exploit the alternating direction method of multipliers (ADMM) for optimizing the cost function. The qualitative and quantitative evaluations of bias and variance exhibit that our proposed algorithm improves the estimations of the average attenuation and the BSC up to about 100%.
Collapse
|
8
|
Kawaji K, Nakajo M, Shinden Y, Jinguji M, Tani A, Hirahara D, Kitazono I, Ohtsuka T, Yoshiura T. Application of Machine Learning Analyses Using Clinical and [ 18F]-FDG-PET/CT Radiomic Characteristics to Predict Recurrence in Patients with Breast Cancer. Mol Imaging Biol 2023; 25:923-934. [PMID: 37193804 DOI: 10.1007/s11307-023-01823-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE To develop and identify machine learning (ML) models using pretreatment clinical and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography ([18F]-FDG-PET)-based radiomic characteristics to predict disease recurrences in patients with breast cancers who underwent surgery. PROCEDURES This retrospective study included 112 patients with 118 breast cancer lesions who underwent [18F]-FDG-PET/ X-ray computed tomography (CT) preoperatively, and these lesions were assigned to training (n=95) and testing (n=23) cohorts. A total of 12 clinical and 40 [18F]-FDG-PET-based radiomic characteristics were used to predict recurrences using 7 different ML algorithms, namely, decision tree, random forest (RF), neural network, k-nearest neighbors, naive Bayes, logistic regression, and support vector machine (SVM) with a 10-fold cross-validation and synthetic minority over-sampling technique. Three different ML models were created using clinical characteristics (clinical ML models), radiomic characteristics (radiomic ML models), and both clinical and radiomic characteristics (combined ML models). Each ML model was constructed using the top ten characteristics ranked by the decrease in Gini impurity. The areas under ROC curves (AUCs) and accuracies were used to compare predictive performances. RESULTS In training cohorts, all 7 ML algorithms except for logistic regression algorithm in the radiomics ML model (AUC = 0.760) achieved AUC values of >0.80 for predicting recurrences with clinical (range, 0.892-0.999), radiomic (range, 0.809-0.984), and combined (range, 0.897-0.999) ML models. In testing cohorts, the RF algorithm of combined ML model achieved the highest AUC and accuracy (95.7% (22/23)) with similar classification performance between training and testing cohorts (AUC: training cohort, 0.999; testing cohort, 0.992). The important characteristics for modeling process of this RF algorithm were radiomic GLZLM_ZLNU and AJCC stage. CONCLUSIONS ML analyses using both clinical and [18F]-FDG-PET-based radiomic characteristics may be useful for predicting recurrence in patients with breast cancers who underwent surgery.
Collapse
Affiliation(s)
- Kodai Kawaji
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masatoyo Nakajo
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Yoshiaki Shinden
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Megumi Jinguji
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Atsushi Tani
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Daisuke Hirahara
- Department of Management Planning Division, Harada Academy, 2-54-4 Higashitaniyama, Kagoshima, 890-0113, Japan
| | - Ikumi Kitazono
- Department of Pathology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
9
|
Huang JX, Shi J, Ding SS, Zhang HL, Wang XY, Lin SY, Xu YF, Wei MJ, Liu LZ, Pei XQ. Deep Learning Model Based on Dual-Modal Ultrasound and Molecular Data for Predicting Response to Neoadjuvant Chemotherapy in Breast Cancer. Acad Radiol 2023; 30 Suppl 2:S50-S61. [PMID: 37270368 DOI: 10.1016/j.acra.2023.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/05/2023]
Abstract
RATIONALE AND OBJECTIVES To carry out radiomics analysis/deep convolutional neural network (CNN) based on B-mode ultrasound (BUS) and shear wave elastography (SWE) to predict response to neoadjuvant chemotherapy (NAC) in breast cancer patients. MATERIALS AND METHODS In this prospective study, 255 breast cancer patients who received NAC between September 2016 and December 2021 were included. Radiomics models were designed using a support vector machine classifier based on US images obtained before treatment, including BUS and SWE. And CNN models also were developed using ResNet architecture. The final predictive model was developed by combining the dual-modal US and independently associated clinicopathologic characteristics. The predictive performances of the models were assessed with five-fold cross-validation. RESULTS Pretreatment SWE performed better than BUS in predicting the response to NAC for breast cancer for both the CNN and radiomics models (P < 0.001). The predictive results of the CNN models were significantly better than the radiomics models, with AUCs of 0.72 versus 0.69 for BUS and 0.80 versus 0.77 for SWE, respectively (P = 0.003). The CNN model based on the dual-modal US and molecular data exhibited outstanding performance in predicting NAC response, with an accuracy of 83.60% ± 2.63%, a sensitivity of 87.76% ± 6.44%, and a specificity of 77.45% ± 4.38%. CONCLUSION The pretreatment CNN model based on the dual-modal US and molecular data achieved excellent performance for predicting the response to chemotherapy in breast cancer. Therefore, this model has the potential to serve as a non-invasive objective biomarker to predict NAC response and aid clinicians with individual treatments.
Collapse
Affiliation(s)
- Jia-Xin Huang
- Department of Medical Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China (J.-X.H., X.-Y.W., Y.-F.X., M.-J.W., L.-Z.L., X.-Q.P.)
| | - Jun Shi
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China (J.S., S.-S.D., H.-L.Z.)
| | - Sai-Sai Ding
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China (J.S., S.-S.D., H.-L.Z.)
| | - Hui-Li Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China (J.S., S.-S.D., H.-L.Z.)
| | - Xue-Yan Wang
- Department of Medical Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China (J.-X.H., X.-Y.W., Y.-F.X., M.-J.W., L.-Z.L., X.-Q.P.)
| | - Shi-Yang Lin
- Department of Medical Ultrasound, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China (S.-Y.L.)
| | - Yan-Fen Xu
- Department of Medical Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China (J.-X.H., X.-Y.W., Y.-F.X., M.-J.W., L.-Z.L., X.-Q.P.)
| | - Ming-Jie Wei
- Department of Medical Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China (J.-X.H., X.-Y.W., Y.-F.X., M.-J.W., L.-Z.L., X.-Q.P.)
| | - Long-Zhong Liu
- Department of Medical Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China (J.-X.H., X.-Y.W., Y.-F.X., M.-J.W., L.-Z.L., X.-Q.P.)
| | - Xiao-Qing Pei
- Department of Medical Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China (J.-X.H., X.-Y.W., Y.-F.X., M.-J.W., L.-Z.L., X.-Q.P.).
| |
Collapse
|
10
|
Champendal M, Marmy L, Malamateniou C, Sá Dos Reis C. Artificial intelligence to support person-centred care in breast imaging - A scoping review. J Med Imaging Radiat Sci 2023; 54:511-544. [PMID: 37183076 DOI: 10.1016/j.jmir.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
AIM To overview Artificial Intelligence (AI) developments and applications in breast imaging (BI) focused on providing person-centred care in diagnosis and treatment for breast pathologies. METHODS The scoping review was conducted in accordance with the Joanna Briggs Institute methodology. The search was conducted on MEDLINE, Embase, CINAHL, Web of science, IEEE explore and arxiv during July 2022 and included only studies published after 2016, in French and English. Combination of keywords and Medical Subject Headings terms (MeSH) related to breast imaging and AI were used. No keywords or MeSH terms related to patients, or the person-centred care (PCC) concept were included. Three independent reviewers screened all abstracts and titles, and all eligible full-text publications during a second stage. RESULTS 3417 results were identified by the search and 106 studies were included for meeting all criteria. Six themes relating to the AI-enabled PCC in BI were identified: individualised risk prediction/growth and prediction/false negative reduction (44.3%), treatment assessment (32.1%), tumour type prediction (11.3%), unnecessary biopsies reduction (5.7%), patients' preferences (2.8%) and other issues (3.8%). The main BI modalities explored in the included studies were magnetic resonance imaging (MRI) (31.1%), mammography (27.4%) and ultrasound (23.6%). The studies were predominantly retrospective, and some variations (age range, data source, race, medical imaging) were present in the datasets used. CONCLUSIONS The AI tools for person-centred care are mainly designed for risk and cancer prediction and disease management to identify the most suitable treatment. However, further studies are needed for image acquisition optimisation for different patient groups, improvement and customisation of patient experience and for communicating to patients the options and pathways of disease management.
Collapse
Affiliation(s)
- Mélanie Champendal
- School of Health Sciences HESAV, HES-SO; University of Applied Sciences Western Switzerland: Lausanne, CH.
| | - Laurent Marmy
- School of Health Sciences HESAV, HES-SO; University of Applied Sciences Western Switzerland: Lausanne, CH.
| | - Christina Malamateniou
- School of Health Sciences HESAV, HES-SO; University of Applied Sciences Western Switzerland: Lausanne, CH; Department of Radiography, Division of Midwifery and Radiography, School of Health Sciences, University of London, London, UK.
| | - Cláudia Sá Dos Reis
- School of Health Sciences HESAV, HES-SO; University of Applied Sciences Western Switzerland: Lausanne, CH.
| |
Collapse
|
11
|
Kheirkhah N, Kornecki A, Czarnota GJ, Samani A, Sadeghi-Naini A. Enhanced full-inversion-based ultrasound elastography for evaluating tumor response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Phys Med 2023; 112:102619. [PMID: 37343438 DOI: 10.1016/j.ejmp.2023.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
PURPOSE An enhanced ultrasound elastography technique is proposed for early assessment of locally advanced breast cancer (LABC) response to neoadjuvant chemotherapy (NAC). METHODS The proposed elastography technique inputs ultrasound radiofrequency data obtained through tissue quasi-static stimulation and adapts a strain refinement algorithm formulated based on fundamental principles of continuum mechanics, coupled with an iterative inverse finite element method to reconstruct the breast Young's modulus (E) images. The technique was explored for therapy response assessment using data acquired from 25 LABC patients before and at weeks 1, 2, and 4 after the NAC initiation (100 scans). The E ratio of tumor to the surrounding tissue was calculated at different scans and compared to the baseline for each patient. Patients' response to NAC was determined many months later using standard clinical and histopathological criteria. RESULTS Reconstructed E ratio changes obtained as early as one week after the NAC onset demonstrate very good separation between the two cohorts of responders and non-responders to NAC. Statistically significant differences were observed in the E ratio changes between the two patient cohorts at weeks 1 to 4 after treatment (p-value < 0.001; statistical power greater than 97%). A significant difference in axial strain ratio changes was observed only at week 4 (p-value = 0.01; statistical power = 76%). No significant difference was observed in tumor size changes at weeks 1, 2 or 4. CONCLUSION The proposed elastography technique demonstrates a high potential for chemotherapy response monitoring in LABC patients and superior performance compared to strain imaging.
Collapse
Affiliation(s)
- Niusha Kheirkhah
- School of Biomedical Engineering, Western University, London, ON, Canada
| | - Anat Kornecki
- Department of Medical Imaging, Western University, London, ON, Canada
| | - Gregory J Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Abbas Samani
- School of Biomedical Engineering, Western University, London, ON, Canada; Departments of Medical Biophysics, Western University, London, ON, Canada; Department of Electrical and Computer Engineering, Western University, London, ON, Canada; Imaging Research, Robarts Research Institute, Western University, London, ON, Canada
| | - Ali Sadeghi-Naini
- School of Biomedical Engineering, Western University, London, ON, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada.
| |
Collapse
|
12
|
Gong X, Liu X, Xie X, Wang Y. Progress in research on ultrasound radiomics for predicting the prognosis of breast cancer. CANCER INNOVATION 2023; 2:283-289. [PMID: 38089749 PMCID: PMC10686118 DOI: 10.1002/cai2.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/20/2023] [Accepted: 06/09/2023] [Indexed: 10/15/2024]
Abstract
Breast cancer is the most common malignant tumor and the leading cause of cancer-related deaths in women worldwide. Effective means of predicting the prognosis of breast cancer are very helpful in guiding treatment and improving patients' survival. Features extracted by radiomics reflect the genetic and molecular characteristics of a tumor and are related to its biological behavior and the patient's prognosis. Thus, radiomics provides a new approach to noninvasive assessment of breast cancer prognosis. Ultrasound is one of the commonest clinical means of examining breast cancer. In recent years, some results of research into ultrasound radiomics for diagnosing breast cancer, predicting lymph node status, treatment response, recurrence and survival times, and other aspects, have been published. In this article, we review the current research status and technical challenges of ultrasound radiomics for predicting breast cancer prognosis. We aim to provide a reference for radiomics researchers, promote the development of ultrasound radiomics, and advance its clinical application.
Collapse
Affiliation(s)
- Xuantong Gong
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xuefeng Liu
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC)Beihang UniversityBeijingChina
| | - Xiaozheng Xie
- School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Yong Wang
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
13
|
Ivanovic N, Bjelica D, Loboda B, Bogdanovski M, Colakovic N, Petricevic S, Gojgic M, Zecic O, Zecic K, Zdravkovic D. Changing the role of pCR in breast cancer treatment - an unjustifiable interpretation of a good prognostic factor as a "factor for a good prognosis". Front Oncol 2023; 13:1207948. [PMID: 37534241 PMCID: PMC10391828 DOI: 10.3389/fonc.2023.1207948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Pathologic complete response (pCR) after neoadjuvant systemic therapy (NAST) of early breast cancer (EBC) has been recognized as a good prognostic factor in the treatment of breast cancer because of its significant correlation with long-term disease outcome. Based on this correlation, pCR has been accepted by health authorities (FDA, EMA) as a surrogate endpoint in clinical trials for accelerated drug approval. Moreover, in recent years, we have observed a tendency to treat pCR in routine clinical practice as a primary therapeutic target rather than just one of the pieces of information obtained from clinical trials. These trends in routine clinical practice are the result of recommendations in treatment guidelines, such as the ESMO recommendation "…to deliver all planned (neoadjuvant) treatment without unnecessary breaks, i.e. without dividing it into preoperative and postoperative periods, irrespective of the magnitude of tumor response", because "…this will increase the probability of achieving pCR, which is a proven factor for a good prognosis…". We hypothesize that the above recommendations and trends in routine clinical practice are the consequences of misunderstanding regarding the concept of pCR, which has led to a shift in its importance from a prognostic factor to a desired treatment outcome. The origin of this misunderstanding could be a strong subconscious incentive to achieve pCR, as patients who achieved pCR after NAST had a better long-term outcome compared with those who did not. In this paper, we attempt to prove our hypothesis. We performed a comprehensive analysis of the therapeutic effects of NAST and adjuvant systemic therapy (AST) in EBC to determine whether pCR, as a phenomenon that can only be achieved at NAST, improves prognosis per se. We used published papers as a source of data, which had a decisive influence on the formation of the modern attitude towards EBC therapy. We were unable to find any evidence supporting the use of pCR as a desired therapeutic goal because NAST (reinforced by pCR) was never demonstrated to be superior to AST in any context.
Collapse
Affiliation(s)
- Nebojsa Ivanovic
- Department of Surgical Oncology, University Hospital Medical Center (UHMC) “Bezanijska kosa”, Belgrade, Serbia
- Department of Surgery, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragana Bjelica
- Department of Surgical Oncology, University Hospital Medical Center (UHMC) “Bezanijska kosa”, Belgrade, Serbia
| | - Barbara Loboda
- Department of Surgical Oncology, University Hospital Medical Center (UHMC) “Bezanijska kosa”, Belgrade, Serbia
| | - Masan Bogdanovski
- Faculty of Philosophy, Department of Philosophy, University of Belgrade, Belgrade, Serbia
| | - Natasa Colakovic
- Department of Surgical Oncology, University Hospital Medical Center (UHMC) “Bezanijska kosa”, Belgrade, Serbia
- Department of Surgery, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Simona Petricevic
- Department of Surgical Oncology, University Hospital Medical Center (UHMC) “Bezanijska kosa”, Belgrade, Serbia
| | - Milan Gojgic
- Department of Surgical Oncology, University Hospital Medical Center (UHMC) “Bezanijska kosa”, Belgrade, Serbia
| | - Ognjen Zecic
- Department of Surgical Oncology, University Hospital Medical Center (UHMC) “Bezanijska kosa”, Belgrade, Serbia
| | - Katarina Zecic
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Darko Zdravkovic
- Department of Surgical Oncology, University Hospital Medical Center (UHMC) “Bezanijska kosa”, Belgrade, Serbia
- Department of Surgery, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Hoerig C, Wallace K, Wu M, Mamou J. Classification of Metastatic Lymph Nodes In Vivo Using Quantitative Ultrasound at Clinical Frequencies. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:787-801. [PMID: 36470739 DOI: 10.1016/j.ultrasmedbio.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/28/2022] [Accepted: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Quantitative ultrasound (QUS) methods characterizing the backscattered echo signal have been of use in assessing tissue microstructure. High-frequency (30 MHz) QUS methods have been successful in detecting metastases in surgically excised lymph nodes (LNs), but limited evidence exists regarding the efficacy of QUS for evaluating LNs in vivo at clinical frequencies (2-10 MHz). In this study, a clinical scanner and 10-MHz linear probe were used to collect radiofrequency (RF) echo data of LNs in vivo from 19 cancer patients. QUS methods were applied to estimate parameters derived from the backscatter coefficient (BSC) and statistics of the envelope-detected RF signal. QUS parameters were used to train classifiers based on linear discriminant analysis (LDA) and support vector machines (SVMs). Two BSC-based parameters, scatterer diameter and acoustic concentration, were the most effective for accurately detecting metastatic LNs, with both LDA and SVMs achieving areas under the receiver operating characteristic (AUROC) curve ≥0.94. A strategy of classifying LNs based on the echo frame with the highest cancer probability improved performance to 88% specificity at 100% sensitivity (AUROC = 0.99). These results provide encouraging evidence that QUS applied at clinical frequencies may be effective at accurately identifying metastatic LNs in vivo, helping in diagnosis while reducing unnecessary biopsies and surgical treatments.
Collapse
Affiliation(s)
- Cameron Hoerig
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA.
| | | | - Maoxin Wu
- Department of Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Jonathan Mamou
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
15
|
Surgical Planning after Neoadjuvant Treatment in Breast Cancer: A Multimodality Imaging-Based Approach Focused on MRI. Cancers (Basel) 2023; 15:cancers15051439. [PMID: 36900231 PMCID: PMC10001061 DOI: 10.3390/cancers15051439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Neoadjuvant chemotherapy (NACT) today represents a cornerstone in the treatment of locally advanced breast cancer and highly chemo-sensitive tumors at early stages, increasing the possibilities of performing more conservative treatments and improving long term outcomes. Imaging has a fundamental role in the staging and prediction of the response to NACT, thus aiding surgical planning and avoiding overtreatment. In this review, we first examine and compare the role of conventional and advanced imaging techniques in preoperative T Staging after NACT and in the evaluation of lymph node involvement. In the second part, we analyze the different surgical approaches, discussing the role of axillary surgery, as well as the possibility of non-operative management after-NACT, which has been the subject of recent trials. Finally, we focus on emerging techniques that will change the diagnostic assessment of breast cancer in the near future.
Collapse
|
16
|
Li Y, Fan Y, Xu D, Li Y, Zhong Z, Pan H, Huang B, Xie X, Yang Y, Liu B. Deep learning radiomic analysis of DCE-MRI combined with clinical characteristics predicts pathological complete response to neoadjuvant chemotherapy in breast cancer. Front Oncol 2023; 12:1041142. [PMID: 36686755 PMCID: PMC9850142 DOI: 10.3389/fonc.2022.1041142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Objective The aim of this study was to develop and validate a deep learning-based radiomic (DLR) model combined with clinical characteristics for predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer. For early prediction of pCR, the DLR model was based on pre-treatment and early treatment dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data. Materials and methods This retrospective study included 95 women (mean age, 48.1 years; range, 29-77 years) who underwent DCE-MRI before (pre-treatment) and after two or three cycles of NAC (early treatment) from 2018 to 2021. The patients in this study were randomly divided into a training cohort (n=67) and a validation cohort (n=28) at a ratio of 7:3. Deep learning and handcrafted features were extracted from pre- and early treatment DCE-MRI contoured lesions. These features contribute to the construction of radiomic signature RS1 and RS2 representing information from different periods. Mutual information and least absolute shrinkage and selection operator regression were used for feature selection. A combined model was then developed based on the DCE-MRI features and clinical characteristics. The performance of the models was assessed using the area under the receiver operating characteristic curve (AUC) and compared using the DeLong test. Results The overall pCR rate was 25.3% (24/95). One radiomic feature and three deep learning features in RS1, five radiomic features and 11 deep learning features in RS2, and five clinical characteristics remained in the feature selection. The performance of the DLR model combining pre- and early treatment information (AUC=0.900) was better than that of RS1 (AUC=0.644, P=0.068) and slightly higher that of RS2 (AUC=0.888, P=0.604) in the validation cohort. The combined model including pre- and early treatment information and clinical characteristics showed the best ability with an AUC of 0.925 in the validation cohort. Conclusion The combined model integrating pre-treatment, early treatment DCE-MRI data, and clinical characteristics showed good performance in predicting pCR to NAC in patients with breast cancer. Early treatment DCE-MRI and clinical characteristics may play an important role in evaluating the outcomes of NAC by predicting pCR.
Collapse
Affiliation(s)
- Yuting Li
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China,Department of Radiology, Dongguan People’s Hospital, Dongguan, China
| | - Yaheng Fan
- Medical Artificial Intelligence Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Dinghua Xu
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yan Li
- Department of Radiology, Dongguan People’s Hospital, Dongguan, China
| | - Zhangnan Zhong
- Medical Artificial Intelligence Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Haoyu Pan
- Medical Artificial Intelligence Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Bingsheng Huang
- Medical Artificial Intelligence Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaotong Xie
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yang Yang
- Department of Radiology, Suining Central Hospital, Suining, China,*Correspondence: Yang Yang, ; Bihua Liu,
| | - Bihua Liu
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China,Department of Radiology, Dongguan People’s Hospital, Dongguan, China,*Correspondence: Yang Yang, ; Bihua Liu,
| |
Collapse
|
17
|
Sharma D, Carter H, Sannachi L, Cui W, Giles A, Saifuddin M, Czarnota GJ. Quantitative Ultrasound for Evaluation of Tumour Response to Ultrasound-Microbubbles and Hyperthermia. Technol Cancer Res Treat 2023; 22:15330338231200993. [PMID: 37750232 PMCID: PMC10521270 DOI: 10.1177/15330338231200993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Objectives: Prior study has demonstrated the implementation of quantitative ultrasound (QUS) for determining the therapy response in breast tumour patients. Several QUS parameters quantified from the tumour region showed a significant correlation with the patient's clinical and pathological response. In this study, we aim to identify if there exists such a link between QUS parameters and changes in tumour morphology due to combined ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) using the breast xenograft model (MDA-MB-231). Method: Tumours grown in the hind leg of severe combined immuno-deficient mice were treated with permutations of USMB and HT. Ultrasound radiofrequency data were collected using a 25 MHz array transducer, from breast tumour-bearing mice prior and post-24-hour treatment. Result: Our result demonstrated an increase in the QUS parameters the mid-band fit and spectral 0-MHz intercept with an increase in HT duration combined with USMB which was found to be reflective of tissue structural changes and cell death detected using haematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labelling stain. A significant decrease in QUS spectral parameters was observed at an HT duration of 60 minutes, which is possibly due to loss of nuclei by the majority of cells as confirmed using histology analysis. Morphological alterations within the tumour might have contributed to the decrease in backscatter parameters. Conclusion: The work here uses the QUS technique to assess the efficacy of cancer therapy and demonstrates that the changes in ultrasound backscatters mirrored changes in tissue morphology.
Collapse
Affiliation(s)
- Deepa Sharma
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Departments of Medical Biophysics and Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Holliday Carter
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Lakshmanan Sannachi
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Departments of Medical Biophysics and Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wentao Cui
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Anoja Giles
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Murtuza Saifuddin
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Gregory J. Czarnota
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Departments of Medical Biophysics and Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Implementation of Non-Invasive Quantitative Ultrasound in Clinical Cancer Imaging. Cancers (Basel) 2022; 14:cancers14246217. [PMID: 36551702 PMCID: PMC9776858 DOI: 10.3390/cancers14246217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Quantitative ultrasound (QUS) is a non-invasive novel technique that allows treatment response monitoring. Studies have shown that QUS backscatter variables strongly correlate with changes observed microscopically. Increases in cell death result in significant alterations in ultrasound backscatter parameters. In particular, the parameters related to scatterer size and scatterer concentration tend to increase in relation to cell death. The use of QUS in monitoring tumor response has been discussed in several preclinical and clinical studies. Most of the preclinical studies have utilized QUS for evaluating cell death response by differentiating between viable cells and dead cells. In addition, clinical studies have incorporated QUS mostly for tissue characterization, including classifying benign versus malignant breast lesions, as well as responder versus non-responder patients. In this review, we highlight some of the important findings of previous preclinical and clinical studies and expand the applicability and therapeutic benefits of QUS in clinical settings. We summarized some recent clinical research advances in ultrasound-based radiomics analysis for monitoring and predicting treatment response and characterizing benign and malignant breast lesions. We also discuss current challenges, limitations, and future prospects of QUS-radiomics.
Collapse
|
19
|
Gu J, Jiang T. Ultrasound radiomics in personalized breast management: Current status and future prospects. Front Oncol 2022; 12:963612. [PMID: 36059645 PMCID: PMC9428828 DOI: 10.3389/fonc.2022.963612] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Providing accurate and efficient diagnosis, risk stratification and timely adjustment of treatment strategies are essential steps in achieving precision medicine before, during and after treatment. Radiomics provides image information that cannot be recognized by the naked eye through deep mining of medical images. Several studies have shown that radiomics, as a second reader of medical images, can assist physicians not only in the detection and diagnosis of breast lesions but also in the assessment of risk stratification and prediction of treatment response. Recently, more and more studies have focused on the application of ultrasound radiomics in breast management. We summarized recent research advances in ultrasound radiomics for the diagnosis of benign and malignant breast lesions, prediction of molecular subtype, assessment of lymph node status, prediction of neoadjuvant chemotherapy response, and prediction of survival. In addition, we discuss the current challenges and future prospects of ultrasound radiomics.
Collapse
Affiliation(s)
- Jionghui Gu
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
| | - Tian'an Jiang
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- *Correspondence: Tian'an Jiang,
| |
Collapse
|
20
|
Derouane F, van Marcke C, Berlière M, Gerday A, Fellah L, Leconte I, Van Bockstal MR, Galant C, Corbet C, Duhoux FP. Predictive Biomarkers of Response to Neoadjuvant Chemotherapy in Breast Cancer: Current and Future Perspectives for Precision Medicine. Cancers (Basel) 2022; 14:3876. [PMID: 36010869 PMCID: PMC9405974 DOI: 10.3390/cancers14163876] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023] Open
Abstract
Pathological complete response (pCR) after neoadjuvant chemotherapy in patients with early breast cancer is correlated with better survival. Meanwhile, an expanding arsenal of post-neoadjuvant treatment strategies have proven beneficial in the absence of pCR, leading to an increased use of neoadjuvant systemic therapy in patients with early breast cancer and the search for predictive biomarkers of response. The better prediction of response to neoadjuvant chemotherapy could enable the escalation or de-escalation of neoadjuvant treatment strategies, with the ultimate goal of improving the clinical management of early breast cancer. Clinico-pathological prognostic factors are currently used to estimate the potential benefit of neoadjuvant systemic treatment but are not accurate enough to allow for personalized response prediction. Other factors have recently been proposed but are not yet implementable in daily clinical practice or remain of limited utility due to the intertumoral heterogeneity of breast cancer. In this review, we describe the current knowledge about predictive factors for response to neoadjuvant chemotherapy in breast cancer patients and highlight the future perspectives that could lead to the better prediction of response, focusing on the current biomarkers used for clinical decision making and the different gene signatures that have recently been proposed for patient stratification and the prediction of response to therapies. We also discuss the intratumoral phenotypic heterogeneity in breast cancers as well as the emerging techniques and relevant pre-clinical models that could integrate this biological factor currently limiting the reliable prediction of response to neoadjuvant systemic therapy.
Collapse
Affiliation(s)
- Françoise Derouane
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Cédric van Marcke
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Martine Berlière
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Gynecology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Gynecology (GYNE), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Amandine Gerday
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Gynecology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Latifa Fellah
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Radiology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Isabelle Leconte
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Radiology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Mieke R. Van Bockstal
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Pathology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Christine Galant
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Pathology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Cyril Corbet
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Francois P. Duhoux
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
21
|
Kong X, Zhang Q, Wu X, Zou T, Duan J, Song S, Nie J, Tao C, Tang M, Wang M, Zou J, Xie Y, Li Z, Li Z. Advances in Imaging in Evaluating the Efficacy of Neoadjuvant Chemotherapy for Breast Cancer. Front Oncol 2022; 12:816297. [PMID: 35669440 PMCID: PMC9163342 DOI: 10.3389/fonc.2022.816297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Neoadjuvant chemotherapy (NAC) is increasingly widely used in breast cancer treatment, and accurate evaluation of its response provides essential information for treatment and prognosis. Thus, the imaging tools used to quantify the disease response are critical in evaluating and managing patients treated with NAC. We discussed the recent progress, advantages, and disadvantages of common imaging methods in assessing the efficacy of NAC for breast cancer.
Collapse
Affiliation(s)
- Xianshu Kong
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Qian Zhang
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Xuemei Wu
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Tianning Zou
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Jiajun Duan
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Shujie Song
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Jianyun Nie
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Chu Tao
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Mi Tang
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Maohua Wang
- First Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Jieya Zou
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Yu Xie
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Zhenhui Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Zhen Li
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| |
Collapse
|
22
|
Rubio IT, Sobrido C. Neoadjuvant approach in patients with early breast cancer: patient assessment, staging, and planning. Breast 2022; 62 Suppl 1:S17-S24. [PMID: 34996668 PMCID: PMC9097809 DOI: 10.1016/j.breast.2021.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Neoadjuvant treatment (NAT) has become an option in early stage (stage I-II) breast cancer (EBC). New advances in systemic and targeted therapies have increased rates of pathologic complete response increasing the number of patients undergoing NAT. Clear benefits of NAT are downstaging the tumor and the axillary nodes to de-escalate surgery and to evaluate response to treatment. Selection of patients for NAT in EBC rely in several factors that are related to patient characteristics (i.e, age and comorbidities), to tumor histology, to stage at diagnosis and to the potential changes in surgical or adjuvant treatments when NAT is administered. Imaging and histologic confirmation is performed to assess extent of disease y to confirm diagnosis. Besides mammogram and ultrasound, functional breast imaging MRI has been incorporated to better predict treatment response and residual disease. Contrast enhanced mammogram (CEM), shear wave elastography (SWE), or Dynamic Optical Breast Imaging (DOBI) are emerging techniques under investigation for assessment of response to neoadjuvant therapy as well as for predicting response. Surgical plan should be delineated after NAT taking into account baseline characteristics, tumor response and patient desire. In the COVID era, we have witnessed also the increasing use of NAT in patients who may be directed to surgery, unable to have it performed as surgery has been reserved for emergency cases only.
Collapse
|
23
|
Bhardwaj D, Dasgupta A, DiCenzo D, Brade S, Fatima K, Quiaoit K, Trudeau M, Gandhi S, Eisen A, Wright F, Look-Hong N, Curpen B, Sannachi L, Czarnota GJ. Early Changes in Quantitative Ultrasound Imaging Parameters during Neoadjuvant Chemotherapy to Predict Recurrence in Patients with Locally Advanced Breast Cancer. Cancers (Basel) 2022; 14:cancers14051247. [PMID: 35267555 PMCID: PMC8909335 DOI: 10.3390/cancers14051247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND This study was conducted to explore the use of quantitative ultrasound (QUS) in predicting recurrence for patients with locally advanced breast cancer (LABC) early during neoadjuvant chemotherapy (NAC). METHODS Eighty-three patients with LABC were scanned with 7 MHz ultrasound before starting NAC (week 0) and during treatment (week 4). Spectral parametric maps were generated corresponding to tumor volume. Twenty-four textural features (QUS-Tex1) were determined from parametric maps acquired using grey-level co-occurrence matrices (GLCM) for each patient, which were further processed to generate 64 texture derivatives (QUS-Tex1-Tex2), leading to a total of 95 features from each time point. Analysis was carried out on week 4 data and compared to baseline (week 0) data. ∆Week 4 data was obtained from the difference in QUS parameters, texture features (QUS-Tex1), and texture derivatives (QUS-Tex1-Tex2) of week 4 data and week 0 data. Patients were divided into two groups: recurrence and non-recurrence. Machine learning algorithms using k-nearest neighbor (k-NN) and support vector machines (SVMs) were used to generate radiomic models. Internal validation was undertaken using leave-one patient out cross-validation method. RESULTS With a median follow up of 69 months (range 7-118 months), 28 patients had disease recurrence. The k-NN classifier was the best performing algorithm at week 4 with sensitivity, specificity, accuracy, and area under curve (AUC) of 87%, 75%, 81%, and 0.83, respectively. The inclusion of texture derivatives (QUS-Tex1-Tex2) in week 4 QUS data analysis led to the improvement of the classifier performances. The AUC increased from 0.70 (0.59 to 0.79, 95% confidence interval) without texture derivatives to 0.83 (0.73 to 0.92) with texture derivatives. The most relevant features separating the two groups were higher-order texture derivatives obtained from scatterer diameter and acoustic concentration-related parametric images. CONCLUSIONS This is the first study highlighting the utility of QUS radiomics in the prediction of recurrence during the treatment of LABC. It reflects that the ongoing treatment-related changes can predict clinical outcomes with higher accuracy as compared to pretreatment features alone.
Collapse
Affiliation(s)
- Divya Bhardwaj
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Archya Dasgupta
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Daniel DiCenzo
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Stephen Brade
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Kashuf Fatima
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Karina Quiaoit
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Maureen Trudeau
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (M.T.); (S.G.); (A.E.)
- Department of Medicine, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Sonal Gandhi
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (M.T.); (S.G.); (A.E.)
- Department of Medicine, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Andrea Eisen
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (M.T.); (S.G.); (A.E.)
- Department of Medicine, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Frances Wright
- Department of Surgical Oncology, Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (F.W.); (N.L.-H.)
- Department of Surgery, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Nicole Look-Hong
- Department of Surgical Oncology, Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (F.W.); (N.L.-H.)
- Department of Surgery, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Belinda Curpen
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
- Department of Medical Imaging, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Lakshmanan Sannachi
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Gregory J. Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M4N 3M5, Canada
- Correspondence: ; Tel.: +416-480-6128
| |
Collapse
|
24
|
Zhang X, Zhang Y, Zhang G, Qiu X, Tan W, Yin X, Liao L. Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Front Oncol 2022; 12:773840. [PMID: 35251962 PMCID: PMC8891653 DOI: 10.3389/fonc.2022.773840] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The high-throughput extraction of quantitative imaging features from medical images for the purpose of radiomic analysis, i.e., radiomics in a broad sense, is a rapidly developing and emerging research field that has been attracting increasing interest, particularly in multimodality and multi-omics studies. In this context, the quantitative analysis of multidimensional data plays an essential role in assessing the spatio-temporal characteristics of different tissues and organs and their microenvironment. Herein, recent developments in this method, including manually defined features, data acquisition and preprocessing, lesion segmentation, feature extraction, feature selection and dimension reduction, statistical analysis, and model construction, are reviewed. In addition, deep learning-based techniques for automatic segmentation and radiomic analysis are being analyzed to address limitations such as rigorous workflow, manual/semi-automatic lesion annotation, and inadequate feature criteria, and multicenter validation. Furthermore, a summary of the current state-of-the-art applications of this technology in disease diagnosis, treatment response, and prognosis prediction from the perspective of radiology images, multimodality images, histopathology images, and three-dimensional dose distribution data, particularly in oncology, is presented. The potential and value of radiomics in diagnostic and therapeutic strategies are also further analyzed, and for the first time, the advances and challenges associated with dosiomics in radiotherapy are summarized, highlighting the latest progress in radiomics. Finally, a robust framework for radiomic analysis is presented and challenges and recommendations for future development are discussed, including but not limited to the factors that affect model stability (medical big data and multitype data and expert knowledge in medical), limitations of data-driven processes (reproducibility and interpretability of studies, different treatment alternatives for various institutions, and prospective researches and clinical trials), and thoughts on future directions (the capability to achieve clinical applications and open platform for radiomics analysis).
Collapse
Affiliation(s)
- Xingping Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Yanchun Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Guijuan Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xingting Qiu
- Department of Radiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
| | - Xiaoxia Yin
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
| | - Liefa Liao
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| |
Collapse
|
25
|
Baek J, Basavarajappa L, Hoyt K, Parker KJ. Disease-Specific Imaging Utilizing Support Vector Machine Classification of H-Scan Parameters: Assessment of Steatosis in a Rat Model. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:720-731. [PMID: 34936555 PMCID: PMC8908945 DOI: 10.1109/tuffc.2021.3137644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In medical imaging, quantitative measurements have shown promise in identifying diseases by classifying normal versus pathological parameters from tissues. The support vector machine (SVM) has shown promise as a supervised classification algorithm and has been widely used. However, the classification results typically identify a category of abnormal tissues but do not necessarily differentiate progressive stages of a disease. Moreover, the classification result is typically provided independently as a supplement to medical images, which contributes to an overload of information sources in the clinic. Hence, we propose a new imaging method utilizing the SVM to integrate classification results into medical images. This framework is called disease-specific imaging (DSI) that produces a color overlaid highlight on B-mode ultrasound images indicating the type, location, and severity of pathology from different conditions. In this article, the SVM training was performed to construct hyperplanes that can differentiate normal, fibrosis, steatosis, and pancreatic ductal adenocarcinoma (PDAC) metastases in livers based on ultrasound echoes. Also, cluster centroids for specific diseases define unique disease axes, and the inner product between measured features and any disease axis selected by the SVM quantifies the disease progression. The features were measured from 2794 ultrasound frames using the H-scan analysis, attenuation estimation, and B-mode image analysis. The performance of our proposed DSI method was evaluated for a preclinical model of steatosis ( n = 400 frames). The contribution of each feature was assessed, and the results were compared with ground truth from histology. Moreover, the images generated by our DSI were compared with earlier imaging methods of B-mode, H-scan, and histology. The comparisons demonstrate that DSI images yield higher sensitivity to monitor progressive steatosis than B-mode and H-scan and provide a comparable performance with the histology. For the parameter comparison, DSI and H-scan resulted in similar correlation with histology ( rs = 0.83 ) but higher than attenuation ( rs = 0.73 ) and B-mode ( rs = 0.47 ). Therefore, we conclude that DSI utilizing the SVM applied to steatosis can visually represent the classification results with color highlighting, which can simplify the interpretation of classification compared to the traditional SVM result. We expect that the proposed DSI can be used for any medical imaging modality that can estimate multiple quantitative parameters at high resolution.
Collapse
|
26
|
Klimonda Z, Karwat P, Dobruch-Sobczak K, Piotrzkowska-Wróblewska H, Litniewski J. Assessment of breast cancer response to neoadjuvant chemotherapy based on ultrasound backscattering envelope statistics. Med Phys 2021; 49:1047-1054. [PMID: 34954844 DOI: 10.1002/mp.15428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Neoadjuvant chemotherapy (NAC) is used in breast cancer before tumor surgery to reduce the size of the tumor and the risk of spreading. Monitoring the effects of NAC is important because in a number of cases the response to therapy is poor and requires a change in treatment. A new method that uses quantitative ultrasound to assess tumor response to NAC has been presented. The aim was to detect NAC unresponsive tumors at an early stage of treatment. METHODS The method assumes that ultrasound scattering is different for responsive and non-responsive tumors. The assessment of the NAC effects was based on the differences between the histograms of the ultrasound echo amplitude recorded from the tumor after each NAC dose and from the tissue phantom, estimated using the Kolmogorov-Smirnov statistics (KSS) and the symmetrical Kullback-Leibler divergence (KLD). After therapy, tumors were resected and histopathologically evaluated. The percentage of residual malignant cells (RMC) was determined and was the basis for assessing the tumor response. The data set included ultrasound data obtained from 37 tumors. The performance of the methods was assessed by means of the area under the receiver operating characteristic curve (AUC). RESULTS For responding tumors a decrease in the mean KLD and KSS values was observed after subsequent doses of NAC. In non-responding tumors the KLD was higher and did not change in subsequent NAC courses. Classification based on the KSS or KLD parameters allowed to detect tumors not responding to NAC after the first dose of the drug, with AUC equal 0.83±0.06 and 0.84±0.07 respectively. After the third dose, the AUC increased to 0.90±0.05 and 0.91±0.04 respectively. CONCLUSIONS The results indicate the potential usefulness of the proposed parameters in assessing the effectiveness of the NAC and early detection of non-responding cases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ziemowit Klimonda
- Ultrasound Department, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw, 02-106, Poland
| | - Piotr Karwat
- Ultrasound Department, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw, 02-106, Poland
| | - Katarzyna Dobruch-Sobczak
- Ultrasound Department, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw, 02-106, Poland.,Radiology Department II, Maria Skłodowska-Curie National Research Institute of Oncology, Wawelska 15B, Warsaw, 02-034, Poland
| | - Hanna Piotrzkowska-Wróblewska
- Ultrasound Department, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw, 02-106, Poland
| | - Jerzy Litniewski
- Ultrasound Department, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw, 02-106, Poland
| |
Collapse
|
27
|
Dasgupta A, Bhardwaj D, DiCenzo D, Fatima K, Osapoetra LO, Quiaoit K, Saifuddin M, Brade S, Trudeau M, Gandhi S, Eisen A, Wright F, Look-Hong N, Sadeghi-Naini A, Curpen B, Kolios MC, Sannachi L, Czarnota GJ. Radiomics in predicting recurrence for patients with locally advanced breast cancer using quantitative ultrasound. Oncotarget 2021; 12:2437-2448. [PMID: 34917262 PMCID: PMC8664392 DOI: 10.18632/oncotarget.28139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022] Open
Abstract
Background: The purpose of the study was to investigate the role of pre-treatment quantitative ultrasound (QUS)-radiomics in predicting recurrence for patients with locally advanced breast cancer (LABC). Materials and Methods: A prospective study was conducted in patients with LABC (n = 83). Primary tumours were scanned using a clinical ultrasound device before starting treatment. Ninety-five imaging features were extracted-spectral features, texture, and texture-derivatives. Patients were determined to have recurrence or no recurrence based on clinical outcomes. Machine learning classifiers with k-nearest neighbour (KNN) and support vector machine (SVM) were evaluated for model development using a maximum of 3 features and leave-one-out cross-validation. Results: With a median follow up of 69 months (range 7–118 months), 28 patients had disease recurrence (local or distant). The best classification results were obtained using an SVM classifier with a sensitivity, specificity, accuracy and area under curve of 71%, 87%, 82%, and 0.76, respectively. Using the SVM model for the predicted non-recurrence and recurrence groups, the estimated 5-year recurrence-free survival was 83% and 54% (p = 0.003), and the predicted 5-year overall survival was 85% and 74% (p = 0.083), respectively. Conclusions: A QUS-radiomics model using higher-order texture derivatives can identify patients with LABC at higher risk of disease recurrence before starting treatment.
Collapse
Affiliation(s)
- Archya Dasgupta
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Divya Bhardwaj
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Daniel DiCenzo
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Kashuf Fatima
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | | | - Karina Quiaoit
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | | | - Stephen Brade
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Maureen Trudeau
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Sonal Gandhi
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Andrea Eisen
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Frances Wright
- Department of Surgical Oncology, Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Nicole Look-Hong
- Department of Surgical Oncology, Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Ali Sadeghi-Naini
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Electrical Engineering and Computer Sciences, Lassonde School of Engineering, York University, Toronto, Canada
| | - Belinda Curpen
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| | | | | | - Gregory J Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
28
|
Baek J, Parker KJ. H-scan trajectories indicate the progression of specific diseases. Med Phys 2021; 48:5047-5058. [PMID: 34287952 DOI: 10.1002/mp.15108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/18/2023] Open
Abstract
PURPOSE The ability of ultrasound to assess pathology is increasing with the development of quantitative parameters. Among these are a set of parameters derived from the recent H-scan analysis of subresolvable scattering. The emergence of these quantitative measures of tissue/ultrasound interactions now enables a study of the unique trajectories of multiparametric features in multidimensional space, representing the progression of specific diseases over time. We develop the mathematical and visual tools that are effective for classifying, quantifying, and visualizing the steady progression of several diseases from independent studies, all within a uniform framework. METHODS After applying the H-scan analysis of ultrasound echoes, we trained a support vector machine (SVM) to classify the unique trajectories of progressive liver disease from fibrosis, steatosis, and pancreatic ductal adenocarcinoma (PDAC) metastasis. Our approaches include the development of trajectory maps and disease-specific color imaging stains. RESULTS The multidimensional SVM image classification reached 100% accuracy across the three different studies. CONCLUSION H-scan trajectories can be useful to track the progression of multiple classes of diseases, improving diagnosis, staging, and assessing the response to therapy.
Collapse
Affiliation(s)
- Jihye Baek
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| | - Kevin J Parker
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| |
Collapse
|
29
|
Dobruch-Sobczak KS, Piotrzkowska-Wróblewska H, Karwat P, Klimonda Z, Markiewicz-Grodzicka E, Litniewski J. Quantitative Assessment of the Echogenicity of a Breast Tumor Predicts the Response to Neoadjuvant Chemotherapy. Cancers (Basel) 2021; 13:3546. [PMID: 34298759 PMCID: PMC8307405 DOI: 10.3390/cancers13143546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to improve monitoring the treatment response in breast cancer patients undergoing neoadjuvant chemotherapy (NAC). The IRB approved this prospective study. Ultrasound examinations were performed prior to treatment and 7 days after four consecutive NAC cycles. Residual malignant cell (RMC) measurement at surgery was the standard of reference. Alteration in B-mode ultrasound (tumor echogenicity and volume) and the Kullback-Leibler divergence (kld), as a quantitative measure of amplitude difference, were used. Correlations of these parameters with RMC were assessed and Receiver Operating Characteristic curve (ROC) analysis was performed. Thirty-nine patients (mean age 57 y.) with 50 tumors were included. There was a significant correlation between RMC and changes in quantitative parameters (KLD) after the second, third and fourth course of NAC, and alteration in echogenicity after the third and fourth course. Multivariate analysis of the echogenicity and KLD after the third NAC course revealed a sensitivity of 91%, specificity of 92%, PPV = 77%, NPV = 97%, accuracy = 91%, and AUC of 0.92 for non-responding tumors (RMC ≥ 70%). In conclusion, monitoring the echogenicity and KLD parameters made it possible to accurately predict the treatment response from the second course of NAC.
Collapse
Affiliation(s)
- Katarzyna Sylwia Dobruch-Sobczak
- Ultrasound Department, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland; (H.P.-W.); (P.K.); (Z.K.); (J.L.)
- Radiology Department II, Maria Sklodowska-Curie National Research Institute of Oncology, 15 Wawelska St., 02-034 Warsaw, Poland
| | - Hanna Piotrzkowska-Wróblewska
- Ultrasound Department, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland; (H.P.-W.); (P.K.); (Z.K.); (J.L.)
| | - Piotr Karwat
- Ultrasound Department, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland; (H.P.-W.); (P.K.); (Z.K.); (J.L.)
| | - Ziemowit Klimonda
- Ultrasound Department, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland; (H.P.-W.); (P.K.); (Z.K.); (J.L.)
| | - Ewa Markiewicz-Grodzicka
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, 15 Wawelska St., 02-034 Warsaw, Poland;
| | - Jerzy Litniewski
- Ultrasound Department, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland; (H.P.-W.); (P.K.); (Z.K.); (J.L.)
| |
Collapse
|
30
|
Kolios C, Sannachi L, Dasgupta A, Suraweera H, DiCenzo D, Stanisz G, Sahgal A, Wright F, Look-Hong N, Curpen B, Sadeghi-Naini A, Trudeau M, Gandhi S, Kolios MC, Czarnota GJ. MRI texture features from tumor core and margin in the prediction of response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Oncotarget 2021; 12:1354-1365. [PMID: 34262646 PMCID: PMC8274727 DOI: 10.18632/oncotarget.28002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/11/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Radiomics involving quantitative analysis of imaging has shown promises in oncology to serve as non-invasive biomarkers. We investigated whether pre-treatment T2-weighted magnetic resonance imaging (MRI) can be used to predict response to neoadjuvant chemotherapy (NAC) in breast cancer. MATERIALS AND METHODS MRI scans were obtained for 102 patients with locally advanced breast cancer (LABC). All patients were treated with standard regimens of NAC as decided by the treating oncologist, followed by surgery and adjuvant treatment according to standard institutional practice. The primary tumor was segmented, and 11 texture features were extracted using the grey-level co-occurrence matrices analysis of the T2W-images from tumor cores and margins. Response assessment was done using clinical-pathological responses with patients classified into binary groups: responders and non-responders. Machine learning classifiers were used to develop a radiomics model, and a leave-one-out cross-validation technique was used to assess the performance. RESULTS 7 features were significantly (p < 0.05) different between the two response groups. The best classification accuracy was obtained using a k-nearest neighbor (kNN) model with sensitivity, specificity, accuracy, and area under curve of 63, 93, 87, and 0.78, respectively. CONCLUSIONS Pre-treatment T2-weighted MRI texture features can predict NAC response with reasonable accuracy.
Collapse
Affiliation(s)
- Christopher Kolios
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Lakshmanan Sannachi
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Archya Dasgupta
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Harini Suraweera
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Daniel DiCenzo
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Gregory Stanisz
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Frances Wright
- Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Nicole Look-Hong
- Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Belinda Curpen
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Ali Sadeghi-Naini
- Department of Electrical and Computer Engineering, York University, North York, Canada
| | - Maureen Trudeau
- Division of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Sonal Gandhi
- Division of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | | | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Department of Physics, Ryerson University, Toronto, Canada
| |
Collapse
|
31
|
Grimm LJ. Radiomics: A Primer for Breast Radiologists. JOURNAL OF BREAST IMAGING 2021; 3:276-287. [PMID: 38424774 DOI: 10.1093/jbi/wbab014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 03/02/2024]
Abstract
Radiomics has a long-standing history in breast imaging with computer-aided detection (CAD) for screening mammography developed in the late 20th century. Although conventional CAD had widespread adoption, the clinical benefits for experienced breast radiologists were debatable due to high false-positive marks and subsequent increased recall rates. The dramatic growth in recent years of artificial intelligence-based analysis, including machine learning and deep learning, has provided numerous opportunities for improved modern radiomics work in breast imaging. There has been extensive radiomics work in mammography, digital breast tomosynthesis, MRI, ultrasound, PET-CT, and combined multimodality imaging. Specific radiomics outcomes of interest have been diverse, including CAD, prediction of response to neoadjuvant therapy, lesion classification, and survival, among other outcomes. Additionally, the radiogenomics subfield that correlates radiomics features with genetics has been very proliferative, in parallel with the clinical validation of breast cancer molecular subtypes and gene expression assays. Despite the promise of radiomics, there are important challenges related to image normalization, limited large unbiased data sets, and lack of external validation. Much of the radiomics work to date has been exploratory using single-institution retrospective series for analysis, but several promising lines of investigation have made the leap to clinical practice with commercially available products. As a result, breast radiologists will increasingly be incorporating radiomics-based tools into their daily practice in the near future. Therefore, breast radiologists must have a broad understanding of the scope, applications, and limitations of radiomics work.
Collapse
Affiliation(s)
- Lars J Grimm
- Duke University, Department of Radiology, Durham, NC, USA
| |
Collapse
|
32
|
Fatima K, Dasgupta A, DiCenzo D, Kolios C, Quiaoit K, Saifuddin M, Sandhu M, Bhardwaj D, Karam I, Poon I, Husain Z, Sannachi L, Czarnota GJ. Ultrasound delta-radiomics during radiotherapy to predict recurrence in patients with head and neck squamous cell carcinoma. Clin Transl Radiat Oncol 2021; 28:62-70. [PMID: 33778174 PMCID: PMC7985224 DOI: 10.1016/j.ctro.2021.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE This study investigated the use of quantitative ultrasound (QUS) obtained during radical radiotherapy (RT) as a radiomics biomarker for predicting recurrence in patients with node-positive head-neck squamous cell carcinoma (HNSCC). METHODS Fifty-one patients with HNSCC were treated with RT (70 Gy/33 fractions) (±concurrent chemotherapy) were included. QUS Data acquisition involved scanning an index neck node with a clinical ultrasound device. Radiofrequency data were collected before starting RT, and after weeks 1, and 4. From this data, 31 spectral and related-texture features were determined for each time and delta (difference) features were computed. Patients were categorized into two groups based on clinical outcomes (recurrence or non-recurrence). Three machine learning classifiers were used for the development of a radiomics model. Features were selected using a forward sequential selection method and validated using leave-one-out cross-validation. RESULTS The median follow up for the entire group was 38 months (range 7-64 months). The disease sites involved neck masses in patients with oropharynx (39), larynx (5), carcinoma unknown primary (5), and hypopharynx carcinoma (2). Concurrent chemotherapy and cetuximab were used in 41 and 1 patient(s), respectively. Recurrence was seen in 17 patients. At week 1 of RT, the support vector machine classifier resulted in the best performance, with accuracy and area under the curve (AUC) of 80% and 0.75, respectively. The accuracy and AUC improved to 82% and 0.81, respectively, at week 4 of treatment. CONCLUSION QUS Delta-radiomics can predict higher risk of recurrence with reasonable accuracy in HNSCC.Clinical trial registration: clinicaltrials.gov.in identifier NCT03908684.
Collapse
Key Words
- AAC, Average acoustic concentration
- ACE, Attenuation co-efficient estimate
- ASD, Average scatterer diameter
- AUC, Area under the curve
- Acc, Accuracy
- CON, Contrast
- COR, Correlation
- CR, Complete responders
- CT, Computed tomography
- Delta-radiomics
- EBV, Epstein-Barr virus
- ENE, Energy
- FDG-PET, 18F-fluorodeoxyglucose positron emission tomography
- FLD, Fisher’s linear discriminant
- FN, False negative
- FP, False positive
- GLCM, Grey level co-occurrence matrix
- HN, Head and neck
- HNSCC, Head and neck squamous cell carcinoma
- HOM, Homogeneity
- HPV, Human papillomavirus
- Head and neck malignancy
- IGRT, Image-guided radiation therapy
- IMRT, Intensity-modulated radiation therapy
- MBF, Mid-band fit
- MRI, Magnetic resonance imaging
- Machine learning
- NR, Non-recurrence
- PET, Positron emission tomography
- PR, Partial responders
- QUS, Quantitative ultrasound
- Quantitative ultrasound
- R, Recurrence
- RF, Radiofrequency
- RFS, Recurrence-free survival
- ROI, Region of interest
- RT, Radiotherapy
- Radiomics
- Radiotherapy squamous cell carcinoma
- Recurrence
- SAS, Spacing among scatterers
- SI, Spectral intercept
- SP, Specificity
- SS, Spectral slope
- SVM, Support vector machine
- Sn, Sensitivity
- TN, True negative
- TP, True positive
- US, Ultrasound
- kNN, k nearest neighbors
Collapse
Affiliation(s)
- Kashuf Fatima
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Archya Dasgupta
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Daniel DiCenzo
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | | | - Karina Quiaoit
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | | | - Michael Sandhu
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Divya Bhardwaj
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Irene Karam
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Ian Poon
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Zain Husain
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | | | - Gregory J. Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
33
|
Assessment of clinical radiosensitivity in patients with head-neck squamous cell carcinoma from pre-treatment quantitative ultrasound radiomics. Sci Rep 2021; 11:6117. [PMID: 33731738 PMCID: PMC7969626 DOI: 10.1038/s41598-021-85221-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
To investigate the role of quantitative ultrasound (QUS) radiomics to predict treatment response in patients with head and neck squamous cell carcinoma (HNSCC) treated with radical radiotherapy (RT). Five spectral parameters, 20 texture, and 80 texture-derivative features were extracted from the index lymph node before treatment. Response was assessed initially at 3 months with complete responders labelled as early responders (ER). Patients with residual disease were followed to classify them as either late responders (LR) or patients with persistent/progressive disease (PD). Machine learning classifiers with leave-one-out cross-validation was used for the development of a binary response-prediction radiomics model. A total of 59 patients were included in the study (22 ER, 29 LR, and 8 PD). A support vector machine (SVM) classifier led to the best performance with accuracy and area under curve (AUC) of 92% and 0.91, responsively to define the response at 3 months (ER vs. LR/PD). The 2-year recurrence-free survival for predicted-ER, LR, PD using an SVM-model was 91%, 78%, and 27%, respectively (p < 0.01). Pretreatment QUS-radiomics using texture derivatives in HNSCC can predict the response to RT with an accuracy of more than 90% with a strong influence on the survival. Clinical trial registration: clinicaltrials.gov.in identifier NCT03908684.
Collapse
|
34
|
How can we achieve equitable global access to cancer imaging and care? Lancet Oncol 2021; 22:429-430. [PMID: 33676610 DOI: 10.1016/s1470-2045(21)00068-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/23/2022]
|
35
|
Cepeda S, García-García S, Arrese I, Velasco-Casares M, Sarabia R. Relationship between the overall survival in glioblastomas and the radiomic features of intraoperative ultrasound: a feasibility study. J Ultrasound 2021; 25:121-128. [PMID: 33594589 PMCID: PMC8964917 DOI: 10.1007/s40477-021-00569-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Predicting the survival of patients diagnosed with glioblastoma (GBM) is essential to guide surgical strategy and subsequent adjuvant therapies. Intraoperative ultrasound (IOUS) can contain biological information that could be correlated with overall survival (OS). We propose a simple extraction method and radiomic feature analysis based on IOUS imaging to estimate OS in GBM patients. METHODS A retrospective study of surgically treated glioblastomas between March 2018 and November 2019 was performed. Patients with IOUS B-mode and strain elastography were included. After preprocessing, segmentation and extraction of radiomic features were performed with LIFEx software. An evaluation of semantic segmentation was carried out using the Dice similarity coefficient (DSC). Using univariate correlations, radiomic features associated with OS were selected. Subsequently, survival analysis was conducted using Cox univariate regression and Kaplan-Meier curves. RESULTS Sixteen patients were available for analysis. The DSC revealed excellent agreement for the segmentation of the tumour region. Of the 52 radiomic features, two texture features from B-mode (conventional mean and the grey-level zone length matrix/short-zone low grey-level emphasis [GLZLM_SZLGE]) and one texture feature from strain elastography (grey-level zone length matrix/long-zone high grey-level emphasis [GLZLM_LZHGE]) were significantly associated with OS. After establishing a cut-off point of the statistically significant radiomic features, we allocated patients in high- and low-risk groups. Kaplan-Meier curves revealed significant differences in OS. CONCLUSION IOUS-based quantitative texture analysis in glioblastomas is feasible. Radiomic tumour region characteristics in B-mode and elastography appear to be significantly associated with OS.
Collapse
Affiliation(s)
- Santiago Cepeda
- Department of Neurosurgery, University Hospital Río Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain.
| | - Sergio García-García
- Department of Neurosurgery, University Hospital Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain
| | - Ignacio Arrese
- Department of Neurosurgery, University Hospital Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain
| | - María Velasco-Casares
- Department of Radiology, University Hospital Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain
| | - Rosario Sarabia
- Department of Neurosurgery, University Hospital Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain
| |
Collapse
|
36
|
Dasgupta A, Fatima K, DiCenzo D, Bhardwaj D, Quiaoit K, Saifuddin M, Karam I, Poon I, Husain Z, Tran WT, Sannachi L, Czarnota GJ. Quantitative ultrasound radiomics in predicting recurrence for patients with node-positive head-neck squamous cell carcinoma treated with radical radiotherapy. Cancer Med 2020; 10:2579-2589. [PMID: 33314716 PMCID: PMC8026932 DOI: 10.1002/cam4.3634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022] Open
Abstract
This prospective study was conducted to investigate the role of quantitative ultrasound (QUS) radiomics in predicting recurrence for patients with node‐positive head‐neck squamous cell carcinoma (HNSCC) treated with radical radiotherapy (RT). The most prominent cervical lymph node (LN) was scanned with a clinical ultrasound device having central frequency of 6.5 MHz. Ultrasound radiofrequency data were processed to obtain 7 QUS parameters. Color‐coded parametric maps were generated based on individual QUS spectral features corresponding to each of the smaller units. A total of 31 (7 primary QUS and 24 texture) features were obtained before treatment. All patients were treated with radical RT and followed according to standard institutional practice. Recurrence (local, regional, or distant) served as an endpoint. Three different machine learning classifiers with a set of maximally three features were used for model development and tested with leave‐one‐out cross‐validation for nonrecurrence and recurrence groups. Fifty‐one patients were included, with a median follow up of 38 months (range 7–64 months). Recurrence was observed in 17 patients. The best results were obtained using a k‐nearest neighbor (KNN) classifier with a sensitivity, specificity, accuracy, and an area under curve of 76%, 71%, 75%, and 0.74, respectively. All the three features selected for the KNN model were texture features. The KNN‐model‐predicted 3‐year recurrence‐free survival was 81% and 40% in the predicted no‐recurrence and predicted‐recurrence groups, respectively. (p = 0.001). The pilot study demonstrates pretreatment QUS‐radiomics can predict the recurrence group with an accuracy of 75% in patients with node‐positive HNSCC. Clinical trial registration: clinicaltrials.gov.in identifier NCT03908684.
Collapse
Affiliation(s)
- Archya Dasgupta
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Kashuf Fatima
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Daniel DiCenzo
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Divya Bhardwaj
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Karina Quiaoit
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | | | - Irene Karam
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Ian Poon
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Zain Husain
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - William T Tran
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | | | - Gregory J Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
37
|
Dasgupta A, Brade S, Sannachi L, Quiaoit K, Fatima K, DiCenzo D, Osapoetra LO, Saifuddin M, Trudeau M, Gandhi S, Eisen A, Wright F, Look-Hong N, Sadeghi-Naini A, Tran WT, Curpen B, Czarnota GJ. Quantitative ultrasound radiomics using texture derivatives in prediction of treatment response to neo-adjuvant chemotherapy for locally advanced breast cancer. Oncotarget 2020; 11:3782-3792. [PMID: 33144919 PMCID: PMC7584238 DOI: 10.18632/oncotarget.27742] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background: To investigate quantitative ultrasound (QUS) based higher-order texture derivatives in predicting the response to neoadjuvant chemotherapy (NAC) in patients with locally advanced breast cancer (LABC). Materials and Methods: 100 Patients with LABC were scanned before starting NAC. Five QUS parametric image-types were generated from radio-frequency data over the tumor volume. From each QUS parametric-image, 4 grey level co-occurrence matrix-based texture images were derived (20 QUS-Tex1), which were further processed to create texture derivatives (80 QUS-Tex1-Tex2). Patients were classified into responders and non-responders based on clinical/pathological responses to treatment. Three machine learning algorithms based on linear discriminant (FLD), k-nearest-neighbors (KNN), and support vector machine (SVM) were used for developing radiomic models of response prediction. Results: A KNN-model provided the best results with sensitivity, specificity, accuracy, and area under curve (AUC) of 87%, 81%, 82%, and 0.86, respectively. The most helpful features in separating the two response groups were QUS-Tex1-Tex2 features. The 5-year recurrence-free survival (RFS) calculated for KNN predicted responders and non-responders using QUS-Tex1-Tex2 model were comparable to RFS for the actual response groups. Conclusions: We report the first study demonstrating QUS texture-derivative methods in predicting NAC responses in LABC, which leads to better results compared to using texture features alone.
Collapse
Affiliation(s)
- Archya Dasgupta
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Stephen Brade
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Lakshmanan Sannachi
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Karina Quiaoit
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Kashuf Fatima
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Daniel DiCenzo
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Laurentius O Osapoetra
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Murtuza Saifuddin
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Maureen Trudeau
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Sonal Gandhi
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Andrea Eisen
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Frances Wright
- Department of Surgical Oncology, Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Nicole Look-Hong
- Department of Surgical Oncology, Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Ali Sadeghi-Naini
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Electrical Engineering and Computer Sciences, Lassonde School of Engineering, York University, Toronto, Canada
| | - William T Tran
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Belinda Curpen
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Gregory J Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Electrical Engineering and Computer Sciences, Lassonde School of Engineering, York University, Toronto, Canada
| |
Collapse
|