1
|
Graf S, Dörl G, Milz C, Kathofer M, Stöhrmann P, Gomola D, Briem E, Schlosser G, Mayerweg A, Semmelweis-Tomits J, Hoti A, Eggerstorfer B, Schmidt C, Crone J, Rujescu D, Spies M, Lanzenberger R, Spurny-Dworak B. Morphological correlates of anxiety-related experiences during a ketamine infusion. World J Biol Psychiatry 2024; 25:537-546. [PMID: 39394769 DOI: 10.1080/15622975.2024.2402261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVES Ketamine exerts rapid antidepressant effects by enhancing neuroplasticity, particularly in the amygdala and hippocampus-regions involved in fear processing and learning. While the role of ketamine's dissociative effects in its antidepressant response is debated, anxiety experienced during infusion has been negatively correlated with treatment outcomes. METHODS In this single-blind, placebo-controlled study, a subset of 17 healthy volunteers (6 males, 23.12 ± 1.9 years) received intravenously a placebo in the first and 0.5 mg/kg racemic ketamine in the second session. Anxiety-related experiences were assessed by the 5D-ASC score obtained post-infusion, structural magnetic resonance imaging scans were acquired 4 h post-infusion. An anxiety-score was obtained from the 5D-ASC. Relation between post-placebo amygdala volume, hippocampal volume, and its subfields with the anxiety-score were assessed using linear regression models. RESULTS Results showed a statistically significant negative relation between hippocampal head volume and the anxiety score (β = -0.733, p = 0.006), with trending negative association for each subfield's head and the score. CONCLUSION These findings suggest that anxiety-related experiences during ketamine infusion may be mediated by the hippocampus, with smaller hippocampal volumes leading to more anxiety-related experiences. Thus, hippocampal subfield volumes may be used as a predictor for anxiety-related events during ketamine use and might predict treatment outcome in future approaches.
Collapse
Affiliation(s)
- S Graf
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - G Dörl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - C Milz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - M Kathofer
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| | - P Stöhrmann
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - D Gomola
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - E Briem
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - G Schlosser
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - A Mayerweg
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - J Semmelweis-Tomits
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - A Hoti
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - B Eggerstorfer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - C Schmidt
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - J Crone
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Faculty of Psychology, University of Vienna, Vienna, Austria
| | - D Rujescu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - M Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - B Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Smoliga JM, Deshpande SK, Binney ZO. Interaction of Surface Type, Temperature, and Week of Season on Concussion Risk in the National Football League: A Bayesian Analysis. Epidemiology 2023; 34:807-816. [PMID: 37732833 DOI: 10.1097/ede.0000000000001657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
BACKGROUND Artificial turf fields and environmental conditions may influence sports concussion risk, but existing research is limited by uncontrolled confounding factors, limited sample size, and the assumption that risk factors are independent of one another. The purpose of this study was to examine how playing surface, time of season, and game temperature relate to diagnosed concussion risk in the National Football League (NFL). METHODS This retrospective cohort study examined data from the 2012 to the 2019 NFL regular season. We fit Bayesian negative binomial regression models to relate how playing surface, game temperature, and week of the season independently related to diagnosed concussion risk and any interactions among these factors. RESULTS We identified 1096 diagnosed concussions in 1830 games. There was a >99% probability that concussion risk was reduced on grass surface (median incidence rate ratio [IRR] = 0.78 [95% credible interval: 0.68, 0.89]), >99% probability that concussion risk was lower at higher temperatures (IRR = 0.85 [0.76,0.95] for each 7.9 °C), and >91% probability that concussion risk increased with each week of the season (IRR = 1.02 [1.00,1.04]). There was an >84% probability for a surface × temperature interaction (IRR = 1.01 [0.96, 1.28]) and >75% probability for a surface × week interaction (IRR = 1.02 [0.99, 1.05]). CONCLUSIONS Diagnosed concussion risk is increased on artificial turf compared with natural grass, and this is exacerbated in cold weather and, independently, later in the season. The complex interplay between these factors necessitates accounting for multiple factors and their interactions when investigating sports injury risk factors and devising mitigation methods.
Collapse
Affiliation(s)
- James M Smoliga
- From the Department of Physical Therapy, One University Parkway, High Point University, High Point, NC
- Doctor of Physical Therapy Program (Seattle), Tufts University School of Medicine, Boston, MA
| | - Sameer K Deshpande
- Department of Statistics, University of Wisconsin, 7225B Medical Sciences Center, Madison, WI
| | | |
Collapse
|
3
|
Valcourt Caron A, Shmuel A, Hao Z, Descoteaux M. versaFlow: a versatile pipeline for resolution adapted diffusion MRI processing and its application to studying the variability of the PRIME-DE database. Front Neuroinform 2023; 17:1191200. [PMID: 37637471 PMCID: PMC10449583 DOI: 10.3389/fninf.2023.1191200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/27/2023] [Indexed: 08/29/2023] Open
Abstract
The lack of "gold standards" in Diffusion Weighted Imaging (DWI) makes validation cumbersome. To tackle this task, studies use translational analysis where results in humans are benchmarked against findings in other species. Non-Human Primates (NHP) are particularly interesting for this, as their cytoarchitecture is closely related to humans. However, tools used for processing and analysis must be adapted and finely tuned to work well on NHP images. Here, we propose versaFlow, a modular pipeline implemented in Nextflow, designed for robustness and scalability. The pipeline is tailored to in vivo NHP DWI at any spatial resolution; it allows for maintainability and customization. Processes and workflows are implemented using cutting-edge and state-of-the-art Magnetic Resonance Imaging (MRI) processing technologies and diffusion modeling algorithms, namely Diffusion Tensor Imaging (DTI), Constrained Spherical Deconvolution (CSD), and DIstribution of Anisotropic MicrOstructural eNvironments in Diffusion-compartment imaging (DIAMOND). Using versaFlow, we provide an in-depth study of the variability of diffusion metrics computed on 32 subjects from 3 sites of the Primate Data Exchange (PRIME-DE), which contains anatomical T1-weighted (T1w) and T2-weighted (T2w) images, functional MRI (fMRI), and DWI of NHP brains. This dataset includes images acquired over a range of resolutions, using single and multi-shell gradient samplings, on multiple scanner vendors. We perform a reproducibility study of the processing of versaFlow using the Aix-Marseilles site's data, to ensure that our implementation has minimal impact on the variability observed in subsequent analyses. We report very high reproducibility for the majority of metrics; only gamma distribution parameters of DIAMOND display less reproducible behaviors, due to the absence of a mechanism to enforce a random number seed in the software we used. This should be taken into consideration when future applications are performed. We show that the PRIME-DE diffusion data exhibits a great level of variability, similar or greater than results obtained in human studies. Its usage should be done carefully to prevent instilling uncertainty in statistical analyses. This hints at a need for sufficient harmonization in acquisition protocols and for the development of robust algorithms capable of managing the variability induced in imaging due to differences in scanner models and/or vendors.
Collapse
Affiliation(s)
- Alex Valcourt Caron
- Sherbrooke Connectivity Imaging Laboratory, Computer Science Department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Amir Shmuel
- Brain Imaging Signals Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ziqi Hao
- Brain Imaging Signals Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory, Computer Science Department, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
4
|
Yin G, Li T, Jin S, Wang N, Li J, Wu C, He H, Wang J. A comprehensive evaluation of multicentric reliability of single-subject cortical morphological networks on traveling subjects. Cereb Cortex 2023:7169131. [PMID: 37197789 DOI: 10.1093/cercor/bhad178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023] Open
Abstract
Despite the prevalence of research on single-subject cerebral morphological networks in recent years, whether they can offer a reliable way for multicentric studies remains largely unknown. Using two multicentric datasets of traveling subjects, this work systematically examined the inter-site test-retest (TRT) reliabilities of single-subject cerebral morphological networks, and further evaluated the effects of several key factors. We found that most graph-based network measures exhibited fair to excellent reliabilities regardless of different analytical pipelines. Nevertheless, the reliabilities were affected by choices of morphological index (fractal dimension > sulcal depth > gyrification index > cortical thickness), brain parcellation (high-resolution > low-resolution), thresholding method (proportional > absolute), and network type (binarized > weighted). For the factor of similarity measure, its effects depended on the thresholding method used (absolute: Kullback-Leibler divergence > Jensen-Shannon divergence; proportional: Jensen-Shannon divergence > Kullback-Leibler divergence). Furthermore, longer data acquisition intervals and different scanner software versions significantly reduced the reliabilities. Finally, we showed that inter-site reliabilities were significantly lower than intra-site reliabilities for single-subject cerebral morphological networks. Altogether, our findings propose single-subject cerebral morphological networks as a promising approach for multicentric human connectome studies, and offer recommendations on how to determine analytical pipelines and scanning protocols for obtaining reliable results.
Collapse
Affiliation(s)
- Guole Yin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Ting Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Suhui Jin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Ningkai Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Changwen Wu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou 310058, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Cognition and Education Sciences, Ministry of Education, Beijing 100816, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510000, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510000, China
| |
Collapse
|
5
|
Spurny-Dworak B, Reed MB, Handschuh P, Vanicek T, Spies M, Bogner W, Lanzenberger R. The influence of season on glutamate and GABA levels in the healthy human brain investigated by magnetic resonance spectroscopy imaging. Hum Brain Mapp 2023; 44:2654-2663. [PMID: 36840505 PMCID: PMC10028653 DOI: 10.1002/hbm.26236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
Seasonal changes in neurotransmitter systems have been demonstrated in imaging studies and are especially noticeable in diseased states such as seasonal affective disorder (SAD). These modulatory neurotransmitters, such as serotonin, are influencing glutamatergic and GABAergic neurotransmission. Furthermore, central components of the circadian pacemaker are regulated by GABA (the suprachiasmatic nucleus) or glutamate (e.g., the retinohypothalamic tract). Therefore, we explored seasonal differences in the GABAergic and glutamatergic system in 159 healthy individuals using magnetic resonance spectroscopy imaging with a GABA-edited 3D-MEGA-LASER sequence at 3T. We quantified GABA+/tCr, GABA+/Glx, and Glx/tCr ratios (GABA+, GABA+ macromolecules; Glx, glutamate + glutamine; tCr, total creatine) in five different subcortical brain regions. Differences between time periods throughout the year, seasonal patterns, and stationarity were tested using ANCOVA models, curve fitting approaches, and unit root and stationarity tests, respectively. Finally, Spearman correlation analyses between neurotransmitter ratios within each brain region and cumulated daylight and global radiation were performed. No seasonal or monthly differences, seasonal patterns, nor significant correlations could be shown in any region or ratio. Unit root and stationarity tests showed stable patterns of GABA+/tCr, GABA+/Glx, and Glx/tCr levels throughout the year, except for hippocampal Glx/tCr. Our results indicate that neurotransmitter levels of glutamate and GABA in healthy individuals are stable throughout the year. Hence, despite the important correction for age and gender in the analyses of MRS derived GABA and glutamate, a correction for seasonality in future studies does not seem necessary. Future investigations in SAD and other psychiatric patients will be of high interest.
Collapse
Affiliation(s)
- B Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - M B Reed
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - P Handschuh
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - T Vanicek
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - M Spies
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - W Bogner
- Department of Biomedical Imaging and Image-Guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Aftanas LI, Filimonova EA, Anisimenko MS, Berdyugina DA, Rezakova MV, Simutkin GG, Bokhan NA, Ivanova SA, Danilenko KV, Lipina TV. The habenular volume and PDE7A allelic polymorphism in major depressive disorder: preliminary findings. World J Biol Psychiatry 2023; 24:223-232. [PMID: 35673941 DOI: 10.1080/15622975.2022.2086297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The habenula is a brain structure implicated in depression, yet with unknown molecular mechanisms. Several phosphodiesterases (PDEs) have been associated with a risk of depression. Although the role of PDE7A in the brain is unknown, it has enriched expression in the medial habenula, suggesting that it may play a role in depression. METHODS We analysed: (1) habenula volume assessed by 3-T magnetic resonance imaging (MRI) in 84 patients with major depressive disorder (MDD) and 41 healthy controls; (2) frequencies of 10 single nucleotide polymorphisms (SNPs) in PDE7A gene in 235 patients and 41 controls; and (3) both indices in 80 patients and 27 controls. The analyses considered gender, age, body mass index and season of the MRI examination. RESULTS The analysis did not reveal habenula volumetric changes in MDD patients regardless of PDE7A SNPs. However, in the combined group, the carriers of one or more mutations among 10 SNPs in the PDE7A gene had a lower volume of the left habenula (driven mainly by rs972362 and rs138599850 mutations) and consequently had the reduced habenular laterality index in comparison with individuals without PDE7A mutations. CONCLUSIONS Our findings suggest the implication of the PDE7A gene into mechanisms determining the habenula structure.
Collapse
Affiliation(s)
- Lyubomir I Aftanas
- Institute of Neurosciences and Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | | | - German G Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Nikolay A Bokhan
- National Research Tomsk State University, Tomsk, Russia.,Siberian State Medical University, Tomsk, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.,Siberian State Medical University, Tomsk, Russia
| | | | | |
Collapse
|