1
|
Juan CG, Matchett KB, Davison GW. A systematic review and meta-analysis of the SIRT1 response to exercise. Sci Rep 2023; 13:14752. [PMID: 37679377 PMCID: PMC10485048 DOI: 10.1038/s41598-023-38843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/16/2023] [Indexed: 09/09/2023] Open
Abstract
Sirtuin 1 (SIRT1) is a key physiological regulator of metabolism and a target of therapeutic interventions for cardiometabolic and ageing-related disorders. Determining the factors and possible mechanisms of acute and adaptive SIRT1 response to exercise is essential for optimising exercise interventions aligned to the prevention and onset of disease. Exercise-induced SIRT1 upregulation has been reported in animals, but, to date, data in humans have been inconsistent. This exploratory systematic review and meta-analysis aims to assess various exercise interventions measuring SIRT1 in healthy participants. A total of 34 studies were included in the meta-analysis (13 single bout exercise, 21 training interventions). Studies were grouped according to tissue sample type (blood, muscle), biomarkers (gene expression, protein content, enzyme level, enzyme activity), and exercise protocols. A single bout of high-intensity or fasted exercise per se increases skeletal muscle SIRT1 gene expression as measured by qPCR or RT-PCR, while repeated resistance training alone increases blood SIRT1 levels measured by ELISA. A limited number of studies also show a propensity for an increase in muscle SIRT1 activity as measured by fluorometric or sirtuin activity assay. In conclusion, exercise acutely upregulates muscle SIRT1 gene expression and chronically increases SIRT1 blood enzyme levels.
Collapse
Affiliation(s)
- Ciara Gallardo Juan
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, BT15 1AP, UK.
| | - Kyle B Matchett
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, BT47 6SB, UK
| | - Gareth W Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, BT15 1AP, UK
| |
Collapse
|
2
|
Juliana CA, Chai J, Arroyo P, Rico-Bautista E, Betz SF, De León DD. A selective nonpeptide somatostatin receptor 5 (SST5) agonist effectively decreases insulin secretion in hyperinsulinism. J Biol Chem 2023:104816. [PMID: 37178920 DOI: 10.1016/j.jbc.2023.104816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
Congenital hyperinsulinism (HI), a beta cell disorder most commonly caused by inactivating mutations of beta cell KATP channels, results in dysregulated insulin secretion and persistent hypoglycemia. Children with KATP-HI are unresponsive to diazoxide, the only FDA-approved drug for HI, and utility of octreotide, the second line therapy, is limited because of poor efficacy, desensitization, and somatostatin receptor type 2 (SST2)-mediated side effects. Selective targeting of SST5, an SST receptor associated with potent insulin secretion suppression, presents a new avenue for HI therapy. Here, we determined that CRN02481, a highly selective nonpeptide SST5 agonist, significantly decreased basal and amino acid-stimulated insulin secretion in both Sur1-/- (a model for KATP-HI) and wild type mouse islets. Oral administration of CRN02481 significantly increased fasting glucose and prevented fasting hypoglycemia compared to vehicle in Sur1-/- mice. During a glucose tolerance test, CRN02481 significantly increased glucose excursion in both WT and Sur1-/- mice compared to control. CRN02481 also reduced glucose- and tolbutamide-stimulated insulin secretion from healthy, control human islets similar to the effects observed with SS14 and peptide somatostatin analogs. Moreover, CRN02481 significantly decreased glucose- and amino acid-stimulated insulin secretion in islets from two infants with KATP-HI and one with Beckwith-Weideman Syndrome-HI. Taken together, these data demonstrate that a potent and selective SST5 agonist effectively prevents fasting hypoglycemia and suppresses insulin secretion not only in a KATP-HI mouse model, but also in healthy human islets and islets from HI patients.
Collapse
Affiliation(s)
- Christine A Juliana
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jinghua Chai
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | | | - Diva D De León
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
3
|
Krawczyk S, Urbanska K, Biel N, Bielak MJ, Tarkowska A, Piekarski R, Prokurat AI, Pacholska M, Ben-Skowronek I. Congenital Hyperinsulinaemic Hypoglycaemia-A Review and Case Presentation. J Clin Med 2022; 11:jcm11206020. [PMID: 36294341 PMCID: PMC9604599 DOI: 10.3390/jcm11206020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Hyperinsulinaemic hypoglycaemia (HH) is the most common cause of persistent hypoglycaemia in infants and children with incidence estimated at 1 per 50,000 live births. Congenital hyperinsulinism (CHI) is symptomatic mostly in early infancy and the neonatal period. Symptoms range from ones that are unspecific, such as poor feeding, lethargy, irritability, apnoea and hypothermia, to more serious symptoms, such as seizures and coma. During clinical examination, newborns present cardiomyopathy and hepatomegaly. The diagnosis of CHI is based on plasma glucose levels <54 mg/dL with detectable serum insulin and C-peptide, accompanied by suppressed or low serum ketone bodies and free fatty acids. The gold standard in determining the form of HH is fluorine-18-dihydroxyphenyloalanine PET ((18)F-DOPA PET). The first-line treatment of CHI is diazoxide, although patients with homozygous or compound heterozygous recessive mutations responsible for diffuse forms of CHI remain resistant to this therapy. The second-line drug is the somatostatin analogue octreotide. Other therapeutic options include lanreotide, glucagon, acarbose, sirolimus and everolimus. Surgery is required in cases unresponsive to pharmacological treatment. Focal lesionectomy or near-total pancreatectomy is performed in focal and diffuse forms of CHI, respectively. To prove how difficult the diagnosis and management of CHI is, we present a case of a patient admitted to our hospital.
Collapse
Affiliation(s)
- Sylwia Krawczyk
- Department of Paediatric Endocrinology and Diabetology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Karolina Urbanska
- Department of Paediatric Endocrinology and Diabetology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Natalia Biel
- Department of Paediatric Endocrinology and Diabetology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Michal Jakub Bielak
- Department of Paediatric Endocrinology and Diabetology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Agata Tarkowska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Robert Piekarski
- Department of Paediatric Endocrinology and Diabetology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Andrzej Igor Prokurat
- Department of Paediatric Surgery, Regional Children’s Hospital in Bydgoszcz, 85-667 Bydgoszcz, Poland
| | - Malgorzata Pacholska
- Department of Paediatric Surgery, Regional Children’s Hospital in Bydgoszcz, 85-667 Bydgoszcz, Poland
| | - Iwona Ben-Skowronek
- Department of Paediatric Endocrinology and Diabetology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
4
|
Feng T, Yan S, Wang Z, Fan X. A facile fluorescence turn-on biosensor customized for monitoring of protein kinase activity based on carboxylic carbon nanoparticles-peptide complexes. LUMINESCENCE 2022; 37:922-929. [PMID: 35322517 DOI: 10.1002/bio.4237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 11/12/2022]
Abstract
In this study, we present a facile and low-cost approach for detecting protein kinase A (PKA) by assembling a purpose-designed carboxyfluorescein (FAM)-labeled peptide with carboxylic carbon nanoparticles (CNPs). Fluorescence of the FAM-labeled peptide gradually decreases to low background signal as a result of the electron transfer from CNPs to FAM-labeled peptide via the peptide, which acts as a bridge. The reaction in the sensor in the presence of adenosine 5'-triphosphate and PKA phosphorylates the substrate peptide and disrupts the electrostatic repulsive force between the CNPs and the peptide, thus altering the spectroscopic signal of the system. The change in fluorescence signal was directly proportional to the PKA concentration in the range of 0-1.8 U/mL with a detection limit of 0.04 U/mL. These results suggest that PKA activity can be effectively measured using the developed PKA biosensor. Moreover, the fluorescence biosensor was successfully used in the investigation of PKA in spiked human embryonic kidney (HEK) 293 cells lysates, indicating its potential applications in protein kinase-related biochemical fundamental research.
Collapse
Affiliation(s)
- Tingting Feng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Shuzhu Yan
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zheng Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Loza-Valdes A, Mayer AE, Kassouf T, Trujillo-Viera J, Schmitz W, Dziaczkowski F, Leitges M, Schlosser A, Sumara G. A phosphoproteomic approach reveals that PKD3 controls PKA-mediated glucose and tyrosine metabolism. Life Sci Alliance 2021; 4:4/8/e202000863. [PMID: 34145024 PMCID: PMC8321662 DOI: 10.26508/lsa.202000863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Protein kinase D3 (PKD3) regulates hepatic metabolism in a PKA-dependent manner and reveals many other putative PKD3 targets in the liver. Members of the protein kinase D (PKD) family (PKD1, 2, and 3) integrate hormonal and nutritional inputs to regulate complex cellular metabolism. Despite the fact that a number of functions have been annotated to particular PKDs, their molecular targets are relatively poorly explored. PKD3 promotes insulin sensitivity and suppresses lipogenesis in the liver of animals fed a high-fat diet. However, its substrates are largely unknown. Here we applied proteomic approaches to determine PKD3 targets. We identified more than 300 putative targets of PKD3. Furthermore, biochemical analysis revealed that PKD3 regulates cAMP-dependent PKA activity, a master regulator of the hepatic response to glucagon and fasting. PKA regulates glucose, lipid, and amino acid metabolism in the liver, by targeting key enzymes in the respective processes. Among them the PKA targets phenylalanine hydroxylase (PAH) catalyzes the conversion of phenylalanine to tyrosine. Consistently, we showed that PKD3 is activated by glucagon and promotes glucose and tyrosine levels in hepatocytes. Therefore, our data indicate that PKD3 might play a role in the hepatic response to glucagon.
Collapse
Affiliation(s)
- Angel Loza-Valdes
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.,Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alexander E Mayer
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Toufic Kassouf
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jonathan Trujillo-Viera
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Werner Schmitz
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Filip Dziaczkowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Michael Leitges
- Tier 1, Canada Research Chair in Cell Signaling and Translational Medicine, Division of BioMedical Sciences/Faculty of Medicine, Craig L Dobbin Genetics Research Centre, Memorial University of Newfoundland, Health Science Centre, St. Johns, Canada
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Grzegorz Sumara
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany .,Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|