1
|
Zichello JM, DeLiberto ST, Holmes P, Pierwola AA, Werner SJ. Recent beak evolution in North American starlings after invasion. Sci Rep 2024; 14:140. [PMID: 38167426 PMCID: PMC10761893 DOI: 10.1038/s41598-023-49623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024] Open
Abstract
European starlings are one of the most abundant and problematic avian invaders in the world. From their native range across Eurasia and North Africa, they have been introduced to every continent except Antarctica. In 160 years, starlings have expanded into different environments throughout the world, making them a powerful model for understanding rapid evolutionary change and adaptive plasticity. Here, we investigate their spatiotemporal morphological variation in North America and the native range. Our dataset includes 1217 specimens; a combination of historical museum skins and modern birds. Beak length in the native range has remained unchanged during the past 206 years, but we find beak length in North American birds is now 8% longer than birds from the native range. We discuss potential drivers of this pattern including dietary adaptation or climatic pressures. Additionally, body size in North American starlings is smaller than those from the native range, which suggests a role for selection or founder effect. Taken together, our results indicate rapid recent evolutionary change in starling morphology coincident with invasion into novel environments.
Collapse
Affiliation(s)
- Julia M Zichello
- Hunter College, City University of New York, New York, NY, USA.
- Division of Anthropology, American Museum of Natural History, New York, NY, USA.
| | - Shelagh T DeLiberto
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA
| | - Paul Holmes
- Animal and Plant Health Agency, Shrewsbury Veterinary Investigation Centre, Shrewsbury, SY1 4HD, UK
| | - Agnieszka A Pierwola
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Scott J Werner
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA
| |
Collapse
|
2
|
Du Y, Wang X, Ashraf S, Tu W, Xi Y, Cui R, Chen S, Yu J, Han L, Gu S, Qu Y, Liu X. Climate match is key to predict range expansion of the world's worst invasive terrestrial vertebrates. GLOBAL CHANGE BIOLOGY 2024; 30:e17137. [PMID: 38273500 DOI: 10.1111/gcb.17137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024]
Abstract
Understanding the determinants of the range expansion of invasive alien species is crucial for developing effective prevention and control strategies. Nevertheless, we still lack a global picture of the potential factors influencing the invaded range expansion across taxonomic groups, especially for the world's worst invaders with high ecological and economic impacts. Here, by extensively collecting data on 363 distributional ranges of 19 of world's worst invasive terrestrial vertebrates across 135 invaded administrative jurisdictions, we observed remarkable variations in the range expansion across species and taxonomic groups. After controlling for taxonomic and geographic pseudoreplicates, model averaging analyses based on generalized additive mixed-effect models showed that species in invaded regions having climates more similar to those of their native ranges tended to undergo a larger range expansion. In addition, as proxies of propagule pressure and human-assisted transportation, the number of introduction events and the road network density were also important predictors facilitating the range expansion. Further variance partitioning analyses validated the predominant role of climate match in explaining the range expansion. Our study demonstrated that regions with similar climates to their native ranges could still be prioritized to prevent the spread of invasive species under the sustained global change.
Collapse
Affiliation(s)
- Yuanbao Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xuyu Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Ecology, Lanzhou University, Lanzhou, Gansu Province, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Sadia Ashraf
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weishan Tu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yonghong Xi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shengnan Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan Province, China
| | - Jiajie Yu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lixia Han
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Shimin Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Hofmeister NR, Stuart KC, Warren WC, Werner SJ, Bateson M, Ball GF, Buchanan KL, Burt DW, Cardilini APA, Cassey P, De Meyer T, George J, Meddle SL, Rowland HM, Sherman CDH, Sherwin WB, Vanden Berghe W, Rollins LA, Clayton DF. Concurrent invasions of European starlings in Australia and North America reveal population-specific differentiation in shared genomic regions. Mol Ecol 2023. [PMID: 37933429 DOI: 10.1111/mec.17195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
A species' success during the invasion of new areas hinges on an interplay between the demographic processes common to invasions and the specific ecological context of the novel environment. Evolutionary genetic studies of invasive species can investigate how genetic bottlenecks and ecological conditions shape genetic variation in invasions, and our study pairs two invasive populations that are hypothesized to be from the same source population to compare how each population evolved during and after introduction. Invasive European starlings (Sturnus vulgaris) established populations in both Australia and North America in the 19th century. Here, we compare whole-genome sequences among native and independently introduced European starling populations to determine how demographic processes interact with rapid evolution to generate similar genetic patterns in these recent and replicated invasions. Demographic models indicate that both invasive populations experienced genetic bottlenecks as expected based on invasion history, and we find that specific genomic regions have differentiated even on this short evolutionary timescale. Despite genetic bottlenecks, we suggest that genetic drift alone cannot explain differentiation in at least two of these regions. The demographic boom intrinsic to many invasions as well as potential inversions may have led to high population-specific differentiation, although the patterns of genetic variation are also consistent with the hypothesis that this infamous and highly mobile invader adapted to novel selection (e.g., extrinsic factors). We use targeted sampling of replicated invasions to identify and evaluate support for multiple, interacting evolutionary mechanisms that lead to differentiation during the invasion process.
Collapse
Affiliation(s)
- Natalie R Hofmeister
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, New York, USA
| | - Katarina C Stuart
- School of Biological, Earth and Environmental Sciences, Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Wesley C Warren
- Department of Animal Sciences and Surgery, Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Scott J Werner
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Melissa Bateson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| | | | - David W Burt
- Office of the Deputy Vice-Chancellor (Research and Innovation), The University of Queensland, Brisbane, Queensland, Australia
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Adam P A Cardilini
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Phillip Cassey
- Invasion Science & Wildlife Ecology Lab, University of Adelaide, Adelaide, South Australia, Australia
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Julia George
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Hannah M Rowland
- Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Craig D H Sherman
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - William B Sherwin
- School of Biological, Earth and Environmental Sciences, Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Wim Vanden Berghe
- Department of Biomedical Sciences, University Antwerp, Antwerp, Belgium
| | - Lee Ann Rollins
- School of Biological, Earth and Environmental Sciences, Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - David F Clayton
- Department of Genetics & Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
4
|
Global invasion history and native decline of the common starling: insights through genetics. Biol Invasions 2023. [DOI: 10.1007/s10530-022-02982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AbstractFew invasive birds are as globally successful as the Common or European Starling (Sturnus vulgaris). Native to the Palearctic, the starling has been intentionally introduced to North and South America, South Africa, Australia, and the Pacific Islands, enabling us to explore species traits that may contribute to its invasion success. Coupling the rich studies of life history and more recent explorations of genomic variation among invasions, we illustrate how eco-evolutionary dynamics shape the invasion success of this long-studied and widely distributed species. Especially informative is the comparison between Australian and North American invasions, because these populations colonized novel ranges concurrently and exhibit shared signals of selection despite distinct population histories. In this review, we describe population dynamics across the native and invasive ranges, identify putatively selected traits that may influence the starling’s spread, and suggest possible determinants of starling success world-wide. We also identify future opportunities to utilize this species as a model for avian invasion research, which will inform our understanding of species’ rapid evolution in response to environmental change.
Collapse
|
5
|
Hofmeister NR, Werner SJ, Lovette IJ. Environmental correlates of genetic variation in the invasive European starling in North America. Mol Ecol 2021; 30:1251-1263. [PMID: 33464634 DOI: 10.1111/mec.15806] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022]
Abstract
Populations of invasive species that colonize and spread in novel environments may differentiate both through demographic processes and local selection. European starlings (Sturnus vulgaris) were introduced to New York in 1890 and subsequently spread throughout North America, becoming one of the most widespread and numerous bird species on the continent. Genome-wide comparisons across starling individuals and populations can identify demographic and/or selective factors that facilitated this rapid and successful expansion. We investigated patterns of genomic diversity and differentiation using reduced-representation genome sequencing of 17 winter-season sampling sites. Consistent with this species' high dispersal rate and rapid expansion history, we found low geographical differentiation and few FST outliers even at a continental scale. Despite starting from a founding population of ~180 individuals, North American starlings show only a moderate genetic bottleneck, and models suggest a dramatic increase in effective population size since introduction. In genotype-environment associations we found that ~200 single-nucleotide polymorphisms are correlated with temperature and/or precipitation against a background of negligible genome- and range-wide divergence. Given this evidence, we suggest that local adaptation in North American starlings may have evolved rapidly even in this wide-ranging and evolutionarily young system. This survey of genomic signatures of expansion in North American starlings is the most comprehensive to date and complements ongoing studies of world-wide local adaptation in these highly dispersive and invasive birds.
Collapse
Affiliation(s)
- Natalie R Hofmeister
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| | - Scott J Werner
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA
| | - Irby J Lovette
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| |
Collapse
|