1
|
Odisi EJ, de Freitas RC, do Amaral DS, da Silva SB, da Silva MAC, de Oliveira Sant Ana W, de Souza Lima AO, Rörig LR. Metataxonomy of acid mine drainage microbiomes from the Santa Catarina Carboniferous Basin (Southern Brazil). Extremophiles 2023; 28:8. [PMID: 38133826 DOI: 10.1007/s00792-023-01324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
Mining activities generate large quantities of wastes that significantly alter the biogeochemistry and ecological structure of entire river basins. Microbial communities that develop in these areas present a variety of survival and adaptation mechanisms. Knowing this diversity at the molecular level is strategic both for understanding adaptive processes and for identifying genomes with potential use in bioremediation and bioprospecting. In this work, prokaryotic and eukaryotic communities were evaluated by meta-taxonomics (16S and 18S amplicons) in sediments and water bodies impacted by acid mine drainage in an important coal mining area in southern Brazil. Five sampling stations were defined on a gradient of impacts (pH 2.7-4.25). Taxon diversity was directly proportional to pH, being greater in sediments than in water. The dominant prokaryotic phyla in the samples were Proteobacteria, Actinobacteria, Acidobacteria, OD1, Nitrospirae, and Euryarchaeota, and among the eukaryotes, algae (Ochrophyta, Chlorophyta, Cryptophyceae), fungi (Basidiomycota, Ascomycota, and Cryptomycota), and protists (Ciliophora, Heterolobosea, Cercozoa). The prokaryotic genera Leptospirillum, Acidithiobacillus, Acidiphilium, Thiomonas, Thermogymnomonas, and Acidobacterium, and the eukaryotic genera Pterocystis and Poteriospumella were associated with more acidic conditions and higher metal concentrations, while the prokaryotic genera Sediminibacterium, Gallionella Geothrix, and Geobacter were more abundant in transitional environments.
Collapse
Affiliation(s)
- Estácio Jussie Odisi
- Laboratory of Phycology, Department of Botany, Federal University of Santa Catarina (LAFIC - UFSC), Florianópolis, Campus Universitário Trindade, Caixa Postal 476, Florianópolis, SC, 88040-900, Brazil
- Biome4All, São Paulo, SP, 01419-909, Brazil
| | | | - Diego Serrasol do Amaral
- Laboratory of Phycology, Department of Botany, Federal University of Santa Catarina (LAFIC - UFSC), Florianópolis, Campus Universitário Trindade, Caixa Postal 476, Florianópolis, SC, 88040-900, Brazil
| | | | - Marcus Adonai Castro da Silva
- Center for Earth and Sea Technological Sciences, University of Vale Do Itajaí (UNIVALI), Rua Uruguai, 458, Itajaí, SC, 88302-202, Brazil
| | - William de Oliveira Sant Ana
- SATC Technological Center, Beneficent Association of the Santa Catarina Coal Industry (SATC), Pascoal Meller St. 73, Criciúma, SC, Brazil
| | - André Oliveira de Souza Lima
- Center for Earth and Sea Technological Sciences, University of Vale Do Itajaí (UNIVALI), Rua Uruguai, 458, Itajaí, SC, 88302-202, Brazil
| | - Leonardo Rubi Rörig
- Laboratory of Phycology, Department of Botany, Federal University of Santa Catarina (LAFIC - UFSC), Florianópolis, Campus Universitário Trindade, Caixa Postal 476, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
2
|
Mining of novel secondary metabolite biosynthetic gene clusters from acid mine drainage. Sci Data 2022; 9:760. [PMID: 36494363 PMCID: PMC9734747 DOI: 10.1038/s41597-022-01866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Acid mine drainage (AMD) is usually acidic (pH < 4) and contains high concentrations of dissolved metals and metalloids, making AMD a typical representative of extreme environments. Recent studies have shown that microbes play a key role in AMD bioremediation, and secondary metabolite biosynthetic gene clusters (smBGCs) from AMD microbes are important resources for the synthesis of antibacterial and anticancer drugs. Here, 179 samples from 13 mineral types were used to analyze the putative novel microorganisms and secondary metabolites in AMD environments. Among 7,007 qualified metagenome-assembled genomes (MAGs) mined from these datasets, 6,340 MAGs could not be assigned to any GTDB species representative. Overall, 11,856 smBGCs in eight categories were obtained from 7,007 qualified MAGs, and 10,899 smBGCs were identified as putative novel smBGCs. We anticipate that these datasets will accelerate research in the field of AMD bioremediation, aid in the discovery of novel secondary metabolites, and facilitate investigation into gene functions, metabolic pathways, and CNPS cycles in AMD.
Collapse
|
3
|
Giddings LA, Kunstman K, Moumen B, Asiama L, Green S, Delafont V, Brockley M, Samba-Louaka A. Isolation and Genome Analysis of an Amoeba-Associated Bacterium Dyella terrae Strain Ely Copper Mine From Acid Rock Drainage in Vermont, United States. Front Microbiol 2022; 13:856908. [PMID: 35677904 PMCID: PMC9169046 DOI: 10.3389/fmicb.2022.856908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Protozoa play important roles in microbial communities, regulating populations via predation and contributing to nutrient cycling. While amoebae have been identified in acid rock drainage (ARD) systems, our understanding of their symbioses in these extreme environments is limited. Here, we report the first isolation of the amoeba Stemonitis from an ARD environment as well as the genome sequence and annotation of an associated bacterium, Dyella terrae strain Ely Copper Mine, from Ely Brook at the Ely Copper Mine Superfund site in Vershire, Vermont, United States. Fluorescent in situ hybridization analysis showed this bacterium colonizing cells of Stemonitis sp. in addition to being outside of amoebal cells. This amoeba-resistant bacterium is Gram-negative with a genome size of 5.36 Mbp and GC content of 62.5%. The genome of the D. terrae strain Ely Copper Mine encodes de novo biosynthetic pathways for amino acids, carbohydrates, nucleic acids, and lipids. Genes involved in nitrate (1) and sulfate (7) reduction, metal (229) and antibiotic resistance (37), and secondary metabolite production (6) were identified. Notably, 26 hydrolases were identified by RAST as well as other biomass degradation genes, suggesting roles in carbon and energy cycling within the microbial community. The genome also contains type IV secretion system genes involved in amoebae resistance, revealing how this bacterium likely survives predation from Stemonitis sp. This genome analysis and the association of D. terrae strain Ely Copper Mine with Stemonitis sp. provide insight into the functional roles of amoebae and bacteria within ARD environments.
Collapse
Affiliation(s)
- Lesley-Ann Giddings
- Department of Chemistry, Smith College, Northampton, MA, United States.,Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, United States
| | - Kevin Kunstman
- Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR7267, Poitiers, France
| | - Laurent Asiama
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, United States
| | - Stefan Green
- Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Vincent Delafont
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR7267, Poitiers, France
| | - Matthew Brockley
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, United States
| | - Ascel Samba-Louaka
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR7267, Poitiers, France
| |
Collapse
|
4
|
Passive Treatment for Acid Mine Drainage Partially Restores Microbial Community Structure in Different Stream Habitats. WATER 2021. [DOI: 10.3390/w13223300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The assessment of the degree to which biological communities in streams impaired by acid mine drainage (AMD) are restored by passive treatment has focused primarily on eukaryotic-cell organisms and microbial processes. The responses of microbial community structure to passive treatment have received much less attention, even though functional processes such as nutrient cycling and organic matter decomposition depend on taxonomic composition. Our objective was to determine the degree to which passive treatment restored microbial communities in three types of habitats: aqueous, leaf, and sediment. To assess their recovery, we compared the community composition in these habitats based on 16S rRNA gene sequencing at three different stream sites: an untreated AMD site (U), a remediated site below AMD passive treatment (T), and an unimpaired reference site (R). The acidity, conductivity, and soluble metal concentrations at T were found to be elevated compared to R, but generally 1–2 orders of magnitude less than at U. Microbial community composition was found to be synergistically affected by habitat type and AMD impact, with the similarity among communities in the three habitats increasing with the severity of the AMD. Sediment- and leaf-associated microbial communities at U were characterized by taxa that are tolerant to severe AMD. The absence of the nitrogen oxidizing bacterium Nitrospira in sediment communities at T and U was found to correspond to higher NH4+ concentrations compared to R, possibly because of the presence of iron oxyhydroxide precipitate. In contrast, the microbial composition was found to be similar between the T and R sites for both aqueous and leaf communities, indicating that passive treatment was more able to restore these communities to the reference condition than sediment communities. The remediation of AMD streams should consider the habitat-specific responses of microbial community composition and be guided by future studies that empirically couple changes in taxonomic composition to measured functional processes.
Collapse
|
5
|
Zarroca M, Roqué C, Linares R, Salminci JG, Gutiérrez F. Natural acid rock drainage in alpine catchments: A side effect of climate warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146070. [PMID: 33711593 DOI: 10.1016/j.scitotenv.2021.146070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
A historical series of aerial photographs spanning more than 70 years (1945-2018) revealed that natural acid rock drainage (ARD) has experienced an intensification in the Noguera de Vallferrera alpine catchment (Central Pyrenees) due to climate change during the last decade. ARD manifests by the precipitation of whitish aluminum-compounds that strikingly cover the beds of some gullies and streams in high-mountain catchments. The total length of affected streams has increased from ca. 5 km (1945) to more than 35 km (2018). Up to 68 water samples were collected in three main areas to determine the spatial variation in acidity and concentration of dissolved metals, representative of surface and subsurface waters. Concentration of aluminum clearly correlates with acidity of waters. Aluminum precipitation occurs where acidic waters, enriched in metals due ARD related to the oxidation of sulfides, mix with non-acidic waters. In addition to aluminum, other potentially toxic trace metals are present at concentrations well above the quality standards for natural waters. Here, we show that climate warming and the severe droughts recorded in the last decade are the most plausible causes for the observed ARD intensification. This result is supported by a good correlation between the regional ascending rate of the periglacial limits (ca. 46 m-height/decade) and the rising rate of the maximum elevations at which ARD occurs (ca. 45 to 55 m-height/decade). In addition to climatic control, we also show that the local geomorphology is playing a major role. The distribution of periglacial deposits (rock glaciers, protalus ramparts, cones and talus slopes) and deep-seated gravitational slope deformations exert a strong control on the spatial patterns and hydrodynamics of ARD. A better understanding of the phenomenon and the monitoring of its evolution can provide clues on these side effects of climate warming, here and in many other alpine catchments worldwide.
Collapse
Affiliation(s)
- Mario Zarroca
- Geology Department, Universitat Autònoma de Barcelona, E-08193-Bellaterra, Barcelona, Spain.
| | - Carles Roqué
- Àrea de Geodinàmica Externa i Geomorfologia, Universitat de Girona, E-17071 Girona, Spain
| | - Rogelio Linares
- Geology Department, Universitat Autònoma de Barcelona, E-08193-Bellaterra, Barcelona, Spain
| | - José G Salminci
- Geology Department, Universitat Autònoma de Barcelona, E-08193-Bellaterra, Barcelona, Spain; Geology and Environment Department, Instituto Nacional de Tecnología Industrial (INTI), Avenida General Paz 5445, Buenos Aires, Argentina
| | - Francisco Gutiérrez
- Earth Sciences Department, Universidad de Zaragoza, C/. Pedro Cerbuna 12, E-50009 Zaragoza, Spain
| |
Collapse
|
6
|
Seasonal Ely Copper Mine Superfund site shotgun metagenomic and metatranscriptomic data analysis. Data Brief 2020; 32:106282. [PMID: 32984474 PMCID: PMC7494679 DOI: 10.1016/j.dib.2020.106282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/21/2022] Open
Abstract
High throughput sequencing data collected from acid rock drainage (ARD) communities can reveal the active taxonomic and functional diversity of these extreme environments, which can be exploited for bioremediation, pharmaceutical, and industrial applications. Here, we report a seasonal comparison of a microbiome and transcriptome in Ely Brook (EB-90M), a confluence of clean water and upstream tributaries that drains the Ely Copper Mine Superfund site in Vershire, VT, USA. Nucleic acids were extracted from EB-90M water and sediment followed by shotgun sequencing using the Illumina NextSeq platform. Approximately 575,933 contigs with a total length of 1.54 Gbp were generated. Contigs of at least a size of 3264 (N50) or greater represented 50% of the sequences and the longest contig was 488,568 bp in length. Using Centrifuge against the NCBI “nt” database 141 phyla, including candidate phyla, were detected. Roughly 380,000 contigs were assembled and ∼1,000,000 DNA and ∼550,000 cDNA sequences were identified and functionally annotated using the Prokka pipeline. Most expressed KEGG-annotated microbial genes were involved in amino acid metabolism and several KEGG pathways were differentially expressed between seasons. Biosynthetic gene clusters involved in secondary metabolism as well as metal- and antibiotic-resistance genes were annotated, some of which were differentially expressed, colocalized, and coexpressed. These data can be used to show how ecological stimuli, such as seasonal variations and metal concentrations, affect the ARD microbiome and select taxa to produce novel natural products. The data reported herein is supporting information for the research article “Characterization of an acid rock drainage microbiome and transcriptome at the Ely Copper Mine Superfund site” by Giddings et al. [1].
Collapse
|