1
|
Denk N, Freichel C, Valmaggia P, Inglin N, Scholl HPN, Kaiser P, Wise S, Vezina M, Maloca PM. Cynomolgus monkey's retina volume reference database based on hybrid deep learning optical coherence tomography segmentation. Sci Rep 2023; 13:5797. [PMID: 37032376 PMCID: PMC10083168 DOI: 10.1038/s41598-023-32739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/31/2023] [Indexed: 04/11/2023] Open
Abstract
Cynomolgus monkeys (Macaca fascicularis) are commonly used in pre-clinical ocular studies. However, studies that report the morphological features of the macaque retina are based only on minimal sample sizes; therefore, little is known about the normal distribution and background variation. This study was conducted using optical coherence tomography (OCT) imaging to investigate the variations in retinal volumes of healthy cynomolgus monkeys and the effects of sex, origin, and eye side on the retinal volumes to establish a comprehensive reference database. A machine-learning algorithm was employed to segment the retina within the OCT data (i.e., generated pixel-wise labels). Furthermore, a classical computer vision algorithm has identified the deepest point in a foveolar depression. The retinal volumes were determined and analyzed based on this reference point and segmented retinal compartments. Notably, the overall foveolar mean volume in zone 1, which is the region of the sharpest vision, was 0.205 mm3 (range 0.154-0.268 mm3), with a relatively low coefficient of variation of 7.9%. Generally, retinal volumes exhibit a relatively low degree of variation. However, significant differences in the retinal volumes due to the monkey's origin were identified. Additionally, sex had a significant impact on the paracentral retinal volume. Therefore, the origin and sex of cynomolgus monkeys should be considered when evaluating the macaque retinal volumes based on this dataset.
Collapse
Affiliation(s)
- Nora Denk
- Pharma Research and Early Development (pRED), Pharmaceutical Sciences (PS), Roche, Innovation Center Basel, 4070, Basel, Switzerland
- Department of Ophthalmology, University Hospital Basel, 4031, Basel, Switzerland
| | - Christian Freichel
- Pharma Research and Early Development (pRED), Pharmaceutical Sciences (PS), Roche, Innovation Center Basel, 4070, Basel, Switzerland
| | - Philippe Valmaggia
- Department of Ophthalmology, University Hospital Basel, 4031, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland
| | - Nadja Inglin
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland
| | - Hendrik P N Scholl
- Department of Ophthalmology, University Hospital Basel, 4031, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland
| | | | - Sylvie Wise
- Charles River Laboratories, Senneville, QC, H9X 1C1, Canada
| | - Marc Vezina
- Charles River Laboratories, Senneville, QC, H9X 1C1, Canada
| | - Peter M Maloca
- Department of Ophthalmology, University Hospital Basel, 4031, Basel, Switzerland.
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland.
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.
| |
Collapse
|
2
|
Maloca PM, Seeger C, Booler H, Valmaggia P, Kawamoto K, Kaba Q, Inglin N, Balaskas K, Egan C, Tufail A, Scholl HPN, Hasler PW, Denk N. Uncovering of intraspecies macular heterogeneity in cynomolgus monkeys using hybrid machine learning optical coherence tomography image segmentation. Sci Rep 2021; 11:20647. [PMID: 34667265 PMCID: PMC8526684 DOI: 10.1038/s41598-021-99704-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
The fovea is a depression in the center of the macula and is the site of the highest visual acuity. Optical coherence tomography (OCT) has contributed considerably in elucidating the pathologic changes in the fovea and is now being considered as an accompanying imaging method in drug development, such as antivascular endothelial growth factor and its safety profiling. Because animal numbers are limited in preclinical studies and automatized image evaluation tools have not yet been routinely employed, essential reference data describing the morphologic variations in macular thickness in laboratory cynomolgus monkeys are sparse to nonexistent. A hybrid machine learning algorithm was applied for automated OCT image processing and measurements of central retina thickness and surface area values. Morphological variations and the effects of sex and geographical origin were determined. Based on our findings, the fovea parameters are specific to the geographic origin. Despite morphological similarities among cynomolgus monkeys, considerable variations in the foveolar contour, even within the same species but from different geographic origins, were found. The results of the reference database show that not only the entire retinal thickness, but also the macular subfields, should be considered when designing preclinical studies and in the interpretation of foveal data.
Collapse
Affiliation(s)
- Peter M Maloca
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland. .,Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland. .,Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.
| | - Christine Seeger
- Preclinical Research and Early Development, Pharmaceutical Sciences, Hoffmann-La Roche, 4070, Basel, Switzerland
| | - Helen Booler
- Preclinical Research and Early Development, Pharmaceutical Sciences, Hoffmann-La Roche, 4070, Basel, Switzerland
| | - Philippe Valmaggia
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
| | - Ken Kawamoto
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Qayim Kaba
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Nadja Inglin
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
| | | | - Catherine Egan
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Adnan Tufail
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland.,Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
| | - Pascal W Hasler
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland
| | - Nora Denk
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland.,Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland.,Preclinical Research and Early Development, Pharmaceutical Sciences, Hoffmann-La Roche, 4070, Basel, Switzerland
| |
Collapse
|