1
|
Martinez-Romero E, Peix A, Hungria M, Mousavi SA, Martinez-Romero J, Young P. Guidelines for the description of rhizobial symbiovars. Int J Syst Evol Microbiol 2024; 74:006373. [PMID: 38743471 PMCID: PMC11165908 DOI: 10.1099/ijsem.0.006373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Rhizobia are bacteria that form nitrogen-fixing nodules in legume plants. The sets of genes responsible for both nodulation and nitrogen fixation are carried in plasmids or genomic islands that are often mobile. Different strains within a species sometimes have different host specificities, while very similar symbiosis genes may be found in strains of different species. These specificity variants are known as symbiovars, and many of them have been given names, but there are no established guidelines for defining or naming them. Here, we discuss the requirements for guidelines to describe symbiovars, propose a set of guidelines, provide a list of all symbiovars for which descriptions have been published so far, and offer a mechanism to maintain a list in the future.
Collapse
Affiliation(s)
| | - Alvaro Peix
- Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain
- Interacción Planta-Microorganismo, Universidad de Salamanca, Unidad Asociada al CSIC por el IRNASA, Salamanca, Spain
| | | | | | | | - Peter Young
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
2
|
Castellani LG, Luchetti A, Nilsson JF, Pérez-Giménez J, Struck B, Schlüter A, Pühler A, Niehaus K, Romero D, Pistorio M, Torres Tejerizo G. RcgA and RcgR, Two Novel Proteins Involved in the Conjugative Transfer of Rhizobial Plasmids. mBio 2022; 13:e0194922. [PMID: 36073816 PMCID: PMC9601222 DOI: 10.1128/mbio.01949-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
Rhizobia are Gram-negative bacteria that are able to establish a nitrogen-fixing symbiotic interaction with leguminous plants. Rhizobia genomes usually harbor several plasmids which can be transferred to other organisms by conjugation. Two main mechanisms of the regulation of rhizobial plasmid transfer have been described: quorum sensing (QS) and the rctA/rctB system. Nevertheless, new genes and molecules that modulate conjugative transfer have recently been described, demonstrating that new actors can tightly regulate the process. In this work, by means of bioinformatics tools and molecular biology approaches, two hypothetical genes are identified as playing key roles in conjugative transfer. These genes are located between conjugative genes of plasmid pRfaLPU83a from Rhizobium favelukesii LPU83, a plasmid that shows a conjugative transfer behavior depending on the genomic background. One of the two mentioned genes, rcgA, is essential for conjugation, while the other, rcgR, acts as an inhibitor of the process. In addition to introducing this new regulatory system, we show evidence of the functions of these genes in different genomic backgrounds and confirm that homologous proteins from non-closely related organisms have the same functions. These findings set up the basis for a new regulatory circuit of the conjugative transfer of plasmids. IMPORTANCE Extrachromosomal DNA elements, such as plasmids, allow for the adaptation of bacteria to new environments by conferring new determinants. Via conjugation, plasmids can be transferred between members of the same bacterial species, different species, or even to organisms belonging to a different kingdom. Knowledge about the regulatory systems of plasmid conjugative transfer is key in understanding the dynamics of their dissemination in the environment. As the increasing availability of genomes raises the number of predicted proteins with unknown functions, deeper experimental procedures help to elucidate the roles of these determinants. In this work, two uncharacterized proteins that constitute a new regulatory circuit with a key role in the conjugative transfer of rhizobial plasmids were discovered.
Collapse
Affiliation(s)
- Lucas G. Castellani
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Abril Luchetti
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juliet F. Nilsson
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Pérez-Giménez
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ben Struck
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Bielefeld, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Bielefeld, Germany
| | - Karsten Niehaus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Bielefeld, Germany
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gonzalo Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
3
|
Choufa C, Tidjani AR, Gauthier A, Harb M, Lao J, Leblond-Bourget N, Vos M, Leblond P, Bontemps C. Prevalence and mobility of integrative and conjugative elements within a Streptomyces natural population. Front Microbiol 2022; 13:970179. [PMID: 36177458 PMCID: PMC9513070 DOI: 10.3389/fmicb.2022.970179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
Horizontal Gene Transfer (HGT) is a powerful force generating genomic diversity in bacterial populations. HGT in Streptomyces is in large part driven by conjugation thanks to plasmids, Integrative and Conjugative elements (ICEs) and Actinomycete ICEs (AICEs). To investigate the impact of ICE and AICE conjugation on Streptomyces genome evolution, we used in silico and experimental approaches on a set of 11 very closely related strains isolated from a millimeter scale rhizosphere population. Through bioinformatic searches of canonical conjugation proteins, we showed that AICEs are the most frequent integrative conjugative elements, with the central chromosome region being a hotspot for integrative element insertion. Strains exhibited great variation in AICE composition consistent with frequent HGT and/or gene loss. We found that single insertion sites can be home to different elements in different strains (accretion) and conversely, elements belonging to the same family can be found at different insertion sites. A wide variety of cargo genes was present in the AICEs with the potential to mediate strain-specific adaptation (e.g., DNA metabolism and resistance genes to antibiotic and phages). However, a large proportion of AICE cargo genes showed hallmarks of pseudogenization, consistent with deleterious effects of cargo genes on fitness. Pock assays enabled the direct visualization of conjugal AICE transfer and demonstrated the transfer of AICEs between some, but not all, of the isolates. Multiple AICEs were shown to be able to transfer during a single mating event. Although we did not obtain experimental evidence for transfer of the sole chromosomal ICE in this population, genotoxic stress mediated its excision from the chromosome, suggesting its functionality. Our results indicate that AICE-mediated HGT in Streptomyces populations is highly dynamic, with likely impact on strain fitness and the ability to adapt to environmental change.
Collapse
Affiliation(s)
| | - Abdoul-Razak Tidjani
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- Faculty of Medecine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble-Alpes, TIMC (UMR 5525), Grenoble, France
| | | | - Manar Harb
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- INRAE-ONIRIS, Nantes, France
| | - Julie Lao
- INRAE, UR1404 MaIAGE, Jouy-en-Josas, France
| | | | - Michiel Vos
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Penryn, United Kingdom
| | - Pierre Leblond
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- *Correspondence: Pierre Leblond,
| | - Cyril Bontemps
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- Cyril Bontemps,
| |
Collapse
|
4
|
Barton IS, Eagan JL, Nieves-Otero PA, Reynolds IP, Platt TG, Fuqua C. Co-dependent and Interdigitated: Dual Quorum Sensing Systems Regulate Conjugative Transfer of the Ti Plasmid and the At Megaplasmid in Agrobacterium tumefaciens 15955. Front Microbiol 2021; 11:605896. [PMID: 33552018 PMCID: PMC7856919 DOI: 10.3389/fmicb.2020.605896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Members of the Rhizobiaceae, often carry multiple secondary replicons in addition to the primary chromosome with compatible repABC-based replication systems. Unlike secondary chromosomes and chromids, repABC-based megaplasmids and plasmids can undergo copy number fluctuations and are capable of conjugative transfer in response to environmental signals. Several Agrobacterium tumefaciens lineages harbor three secondary repABC-based replicons, including a secondary chromosome (often linear), the Ti (tumor-inducing) plasmid and the At megaplasmid. The Ti plasmid is required for virulence and encodes a conjugative transfer (tra) system that is strictly regulated by a subset of plant-tumor released opines and a well-described acyl-homoserine lactone (AHL)-based quorum-sensing mechanism. The At plasmids are generally not required for virulence, but carry genes that enhance rhizosphere survival, and these plasmids are often conjugatively proficient. We report that the At megaplasmid of the octopine-type strain A. tumefaciens 15955 encodes a quorum-controlled conjugation system that directly interacts with the paralogous quorum sensing system on the co-resident Ti plasmid. Both the pAt15955 and pTi15955 plasmids carry homologs of a TraI-type AHL synthase, a TraR-type AHL-responsive transcription activator, and a TraM-type anti-activator. The traI genes from both pTi15955 and pAt15955 can direct production of the inducing AHL (3-octanoyl-L-homoserine lactone) and together contribute to the overall AHL pool. The TraR protein encoded on each plasmid activates AHL-responsive transcription of target tra gene promoters. The pAt15955 TraR can cross-activate tra genes on the Ti plasmid as strongly as its cognate tra genes, whereas the pTi15955 TraR is preferentially biased toward its own tra genes. Putative tra box elements are located upstream of target promoters, and comparing between plasmids, they are in similar locations and share an inverted repeat structure, but have distinct consensus sequences. The two AHL quorum sensing systems have a combinatorial effect on conjugative transfer of both plasmids. Overall, the interactions described here have implications for the horizontal transfer and evolutionary stability of both plasmids and, in a broad sense, are consistent with other repABC systems that often have multiple quorum-sensing controlled secondary replicons.
Collapse
Affiliation(s)
- Ian S Barton
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - Justin L Eagan
- Department of Biology, Indiana University, Bloomington, IN, United States
| | | | - Ian P Reynolds
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - Thomas G Platt
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN, United States
| |
Collapse
|