1
|
Kim J, Kim JJ. Computational comparison study of virtual compression and shear test for estimation of apparent elastic moduli under various boundary conditions. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3845. [PMID: 38979678 DOI: 10.1002/cnm.3845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/05/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024]
Abstract
Virtual compression tests based on finite element analysis are representative noninvasive methods to evaluate bone strength. However, owing to the characteristic porous structure of bones, the material obtained from micro-computed tomography images in the finite-element model is not uniformly distributed. These characteristics cause differences in the apparent elastic moduli depending on the boundary conditions and affect the accuracy of bone-strength evaluation. Therefore, this study aimed to evaluate and compare the apparent elastic moduli under various, virtual-compression and shear-test boundary conditions. Four, nonuniform models were constructed with increasing model complexity. For representative boundary conditions, two, different, testing directions, and constrained surfaces were applied. As a result, the apparent elastic moduli of the nonuniform model varied up to 55.2% based on where the constrained surface was located in the single-end-cemented condition. Additionally, when connectivity in the test direction was lost, the accuracy of the apparent elastic moduli was low. A graphical comparison showed that the equivalent-stress distribution was more advantageous for analyzing load transferability and physical behavior than the strain-energy distribution. These results clearly show that the prediction accuracy of the apparent elastic moduli can be guaranteed if the boundary condition on the constraint and loading surfaces of the nonuniform model are applied symmetrically and the connectivity of the elements in the testing direction is well maintained. This study will aid in precision improvement of bone-strength-indicator determination for osteoporosis prevention.
Collapse
Affiliation(s)
- Jisun Kim
- Department of Mechanical Engineering, Keimyung University, Daegu, Republic of Korea
| | - Jung Jin Kim
- Department of Mechanical Engineering, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Baumer V, Isaacson N, Kanakamedala S, McGee D, Kaze I, Prawel D. Comparing ceramic Fischer-Koch-S and gyroid TPMS scaffolds for potential in bone tissue engineering. Front Bioeng Biotechnol 2024; 12:1410837. [PMID: 39193226 PMCID: PMC11347304 DOI: 10.3389/fbioe.2024.1410837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Triply Periodic Minimal Surfaces (TPMS), such as Gyroid, are widely accepted for bone tissue engineering due to their interconnected porous structures with tunable properties that enable high surface area to volume ratios, energy absorption, and relative strength. Among these topologies, the Fischer-Koch-S (FKS) has also been suggested for compact bone scaffolds, but few studies have investigated these structures beyond computer simulations. FKS scaffolds have been fabricated in metal and polymer, but to date none have been fabricated in a ceramic used in bone tissue engineering (BTE) scaffolds. This study is the first to fabricate ceramic FKS scaffolds and compare them with the more common Gyroid topology. Results showed that FKS scaffolds were 32% stronger, absorbed 49% more energy, and had only 11% lower permeability than Gyroid scaffolds when manufactured at high porosity (70%). Both FKS and Gyroid scaffolds displayed strength and permeability in the low range of trabecular long bones with high reliability (Weibull failure probability) in the normal direction. Fracture modes were further investigated to explicate the quasi-brittle failure exhibited by both scaffold topologies, exploring stress-strain relationships along with scanning electron microscopy for failure analysis. Considering the physical aspects of successful bone tissue engineering scaffolds, FKS scaffolds appear to be more promising for further study as bone regeneration scaffolds than Gyroid due to their higher compressive strength and reliability, at only a small penalty to permeability. In the context of BTE, FKS scaffolds may be better suited than Gyroids to applications where denser bone and strength is prioritized over permeability, as suggested by earlier simulation studies.
Collapse
Affiliation(s)
- Vail Baumer
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Nelson Isaacson
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Shashank Kanakamedala
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Duncan McGee
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, United States
| | - Isabella Kaze
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - David Prawel
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
3
|
Luo W, Wang Y, Wang Z, Jiao J, Yu T, Jiang W, Li M, Zhang H, Gong X, Chao B, Liu S, Wu X, Wang J, Wu M. Advanced topology of triply periodic minimal surface structure for osteogenic improvement within orthopedic metallic screw. Mater Today Bio 2024; 27:101118. [PMID: 38975238 PMCID: PMC11225863 DOI: 10.1016/j.mtbio.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024] Open
Abstract
Metallic screws are one of the most common implants in orthopedics. However, the solid design of the screw has often resulted in stress shielding and postoperative loosening, substantially impacting its long-term fixation effect after surgery. Four additive manufacturing porous structures (Fischer-Koch S, Octet, Diamond, and Double Gyroid) are now introduced into the screw to fix those issues. Upon applying the four porous structures, elastic modulus in the screw decreased about 2∼15 times to reduce the occurrence of stress shielding, and bone regeneration effect on the screw surface increased about 1∼50 times to improve bone tissue regrowing. With more bone tissue regrowing on the inner surface of porous screw, a stiffer integration between screw and bone tissue will be achieved, which improves the long-term fixation of the screw tremendously. The biofunctions of the four topologies on osteogenesis have been fully explored, which provides an advanced topology optimization scheme for the screw utilized in orthopedic fixation.
Collapse
Affiliation(s)
- Wangwang Luo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Weibo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Mufeng Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xuqiang Gong
- Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Shixian Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xuhui Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Wang Z, Liao B, Liu Y, Liao Y, Zhou Y, Li W. Influence of structural parameters of 3D-printed triply periodic minimal surface gyroid porous scaffolds on compression performance, cell response, and bone regeneration. J Biomed Mater Res B Appl Biomater 2024; 112:e35337. [PMID: 37795764 DOI: 10.1002/jbm.b.35337] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/19/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
In this study, multi-scale triply periodic minimal surface (TPMS) porous scaffolds with uniform and radial gradient distribution on pore size were printed based on the selective laser melting technology, and the influences of porosity, pore size and radial pore size distribution on compression mechanical properties, cell behavior, and bone regeneration behavior were analyzed. The results showed that the compression performance of the uniform porous scaffolds with high porosity was similar to that of cancellous bone of pig tibia, and the gradient porous scaffolds have higher elastic modulus and compressive toughness. After 4 days of cell culture, cells were distributed on the surface of scaffolds mostly, and the number of adherent cells was higher on the small pore size porous scaffolds; After 7 days, the area and density of cell proliferation on the scaffolds were improved; After 14 days, the cells on the small pore size scaffolds tended to migrate to adjacent pores. Animal implantation experiments showed that collagen fiber osteoid was intermittent on scaffolds with high porosity and large pore size, which was not conducive to bone formation. The appropriate pore size and porosity of bone regeneration were 792 um and 83%, respectively, and the regenerative ability of gradient pore size was better than that of uniform pore size. Our study explains the rules of TPMS gyroid structure parameters on compression performance, cell response and bone regeneration, and provides a reference value for the design of bone repair scaffolds for clinical orthopedics.
Collapse
Affiliation(s)
- Zhenglun Wang
- Tribology Research Institute, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu, China
| | - Bo Liao
- Tribology Research Institute, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu, China
| | - Yongsheng Liu
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Pangang Group Research Institute Co., Ltd., Panzhihua, China
- R & D Center for High-end Parts, Chengdu Advanced Metal Materials Industry Technology Research Institute Co., Ltd., Chengdu, China
| | - Yunqian Liao
- Tribology Research Institute, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu, China
| | - Yu Zhou
- Tribology Research Institute, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu, China
| | - Wei Li
- Tribology Research Institute, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
5
|
Ma J, Li Y, Mi Y, Gong Q, Zhang P, Meng B, Wang J, Wang J, Fan Y. Novel 3D printed TPMS scaffolds: microstructure, characteristics and applications in bone regeneration. J Tissue Eng 2024; 15:20417314241263689. [PMID: 39071895 PMCID: PMC11283664 DOI: 10.1177/20417314241263689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/07/2024] [Indexed: 07/30/2024] Open
Abstract
Bone defect disease seriously endangers human health and affects beauty and function. In the past five years, the three dimension (3D) printed radially graded triply periodic minimal surface (TPMS) porous scaffold has become a new solution for repairing bone defects. This review discusses 3D printing technologies and applications for TPMS scaffolds. To this end, the microstructural effects of 3D printed TPMS scaffolds on bone regeneration were reviewed and the structural characteristics of TPMS, which can promote bone regeneration, were introduced. Finally, the challenges and prospects of using TPMS scaffolds to treat bone defects were presented. This review is expected to stimulate the interest of bone tissue engineers in radially graded TPMS scaffolds and provide a reliable solution for the clinical treatment of personalised bone defects.
Collapse
Affiliation(s)
- Jiaqi Ma
- Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yumeng Li
- Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yujing Mi
- Department of Orthodontics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiannan Gong
- Shanxi Provincial People’s Hospital of Stomatology,Taiyuan,China
| | - Pengfei Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Bing Meng
- Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jue Wang
- Department of Prosthodontics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yawei Fan
- Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Liu H, Chen H, Han Q, Sun B, Liu Y, Zhang A, Fan D, Xia P, Wang J. Recent advancement in vascularized tissue-engineered bone based on materials design and modification. Mater Today Bio 2023; 23:100858. [PMID: 38024843 PMCID: PMC10679779 DOI: 10.1016/j.mtbio.2023.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/03/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bone is one of the most vascular network-rich tissues in the body and the vascular system is essential for the development, homeostasis, and regeneration of bone. When segmental irreversible damage occurs to the bone, restoring its vascular system by means other than autogenous bone grafts with vascular pedicles is a therapeutic challenge. By pre-generating the vascular network of the scaffold in vivo or in vitro, the pre-vascularization technique enables an abundant blood supply in the scaffold after implantation. However, pre-vascularization techniques are time-consuming, and in vivo pre-vascularization techniques can be damaging to the body. Critical bone deficiencies may be filled quickly with immediate implantation of a supporting bone tissue engineered scaffold. However, bone tissue engineered scaffolds generally lack vascularization, which requires modification of the scaffold to aid in enhancing internal vascularization. In this review, we summarize the relationship between the vascular system and osteogenesis and use it as a basis to further discuss surgical and cytotechnology-based pre-vascularization strategies and to describe the preparation of vascularized bone tissue engineered scaffolds that can be implanted immediately. We anticipate that this study will serve as inspiration for future vascularized bone tissue engineered scaffold construction and will aid in the achievement of clinical vascularized bone.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Qin Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Bin Sun
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Danyang Fan
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|
7
|
Baumer V, Gunn E, Riegle V, Bailey C, Shonkwiler C, Prawel D. Robocasting of Ceramic Fischer-Koch S Scaffolds for Bone Tissue Engineering. J Funct Biomater 2023; 14:jfb14050251. [PMID: 37233361 DOI: 10.3390/jfb14050251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Triply Periodic Minimal Surfaces (TPMS) are promising structures for bone tissue engineering scaffolds due to their relatively high mechanical energy absorption, smoothly interconnected porous structure, scalable unit cell topology, and relatively high surface area per volume. Calcium phosphate-based materials, such as hydroxyapatite and tricalcium phosphate, are very popular scaffold biomaterials due to their biocompatibility, bioactivity, compositional similarities to bone mineral, non-immunogenicity, and tunable biodegradation. Their brittle nature can be partially mitigated by 3D printing them in TPMS topologies such as gyroids, which are widely studied for bone regeneration, as evidenced by their presence in popular 3D-printing slicers, modeling systems, and topology optimization tools. Although structural and flow simulations have predicted promising properties of other TPMS scaffolds, such as Fischer-Koch S (FKS), to the best of our knowledge, no one has explored these possibilities for bone regeneration in the laboratory. One reason for this is that fabrication of the FKS scaffolds, such as by 3D printing, is challenged by a lack of algorithms to model and slice this topology for use by low-cost biomaterial printers. This paper presents an open-source software algorithm that we developed to create 3D-printable FKS and gyroid scaffold cubes, with a framework that can accept any continuous differentiable implicit function. We also report on our successful 3D printing of hydroxyapatite FKS scaffolds using a low-cost method that combines robocasting with layer-wise photopolymerization. Dimensional accuracy, internal microstructure, and porosity characteristics are also presented, demonstrating promising potential for the 3D printing of TPMS ceramic scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Vail Baumer
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Erin Gunn
- Department of Computer Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Valerie Riegle
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Claire Bailey
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Clayton Shonkwiler
- Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA
| | - David Prawel
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
8
|
The Effect of Tortuosity on Permeability of Porous Scaffold. Biomedicines 2023; 11:biomedicines11020427. [PMID: 36830961 PMCID: PMC9953537 DOI: 10.3390/biomedicines11020427] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
In designing porous scaffolds, permeability is essential to consider as a function of cell migration and bone tissue regeneration. Good permeability has been achieved by mimicking the complexity of natural cancellous bone. In this study, a porous scaffold was developed according to the morphological indices of cancellous bone (porosity, specific surface area, thickness, and tortuosity). The computational fluid dynamics method analyzes the fluid flow through the scaffold. The permeability values of natural cancellous bone and three types of scaffolds (cubic, octahedron pillar, and Schoen's gyroid) were compared. The results showed that the permeability of the Negative Schwarz Primitive (NSP) scaffold model was similar to that of natural cancellous bone, which was in the range of 2.0 × 10-11 m2 to 4.0 × 10-10 m2. In addition, it was observed that the tortuosity parameter significantly affected the scaffold's permeability and shear stress values. The tortuosity value of the NSP scaffold was in the range of 1.5-2.8. Therefore, tortuosity can be manipulated by changing the curvature of the surface scaffold radius to obtain a superior bone tissue engineering construction supporting cell migration and tissue regeneration. This parameter should be considered when making new scaffolds, such as our NSP. Such efforts will produce a scaffold architecturally and functionally close to the natural cancellous bone, as demonstrated in this study.
Collapse
|
9
|
Jaber M, Poh PSP, Duda GN, Checa S. PCL strut-like scaffolds appear superior to gyroid in terms of bone regeneration within a long bone large defect: An in silico study. Front Bioeng Biotechnol 2022; 10:995266. [PMID: 36213070 PMCID: PMC9540363 DOI: 10.3389/fbioe.2022.995266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
The treatment of large bone defects represents a major clinical challenge. 3D printed scaffolds appear as a promising strategy to support bone defect regeneration. The 3D design of such scaffolds impacts the healing path and thus defect regeneration potential. Among others, scaffold architecture has been shown to influence the healing outcome. Gyroid architecture, characterized by a zero mean surface curvature, has been discussed as a promising scaffold design for bone regeneration. However, whether gyroid scaffolds are favourable for bone regeneration in large bone defects over traditional strut-like architecture scaffolds remains unknown. Therefore, the aim of this study was to investigate whether gyroid scaffolds present advantages over more traditional strut-like scaffolds in terms of their bone regeneration potential. Validated bone defect regeneration principles were applied in an in silico modeling approach that allows to predict bone formation in defect regeneration. Towards this aim, the mechano-biological bone regeneration principles were adapted to allow simulating bone regeneration within both gyroid and strut-like scaffolds. We found that the large surface curvatures of the gyroid scaffold led to a slower tissue formation dynamic and conclusively reduced bone regeneration. The initial claim, that an overall reduced zero mean surface curvature would enhance bone formation, could not be confirmed. The here presented approach illustrates the potential of in silico tools to evaluate in pre-clinical studies scaffold designs and eventually lead to optimized architectures of 3D printed implants for bone regeneration.
Collapse
Affiliation(s)
- Mahdi Jaber
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - Patrina S. P. Poh
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Georg N. Duda
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin, Germany
| | - Sara Checa
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- *Correspondence: Sara Checa,
| |
Collapse
|
10
|
Lu Y, Huo Y, Zou J, Li Y, Yang Z, Zhu H, Wu C. Comparison of the design maps of TPMS based bone scaffolds using a computational modeling framework simultaneously considering various conditions. Proc Inst Mech Eng H 2022; 236:1157-1168. [DOI: 10.1177/09544119221102704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, the triply periodic minimal surface (TPMS)-based scaffolds have been served as one of the crucial types of structures for biological replacements, the energy absorber, etc. Meanwhile, the development of additive manufacturing (AM) has facilitated the production of TPMS scaffolds with complex microstructures. However, the design maps of TPMS scaffolds, especially considering the AM constraints, remain unclear, which has hindered the design and application of TPMS scaffolds. The aims of the present study were to develop an efficient computational modeling framework for investigating the design maps of TPMS scaffolds simultaneously considering the AM constraints, the biological requirements, and the structural anisotropy. To demonstrate the computational framework, five widely-used topologies of the TPMS-based scaffolds (i.e. the Diamond, the Gyroid, the Fischer-Koch S, the F-RD, and the Schwarz P) were used, whose design maps for the surface-to-volume ratio and the effective elastic modulus were also investigated. The results showed that as the porosities increase, the design ranges of the surface-to-volume ratios decreases for all the structures. Compared with the effect of the constraint for the pore size, the minimal structural thickness for AM constraint has a greater effect on the surface-to-volume ratio. Regarding the elastic modulus, in the region of low porosity (approximately 0.5–0.7), the range for the effective elastic modulus of Schwarz P is the widest (approximately 2.24–32.6 GPa), but the Gyroid can achieve both high porosity and low effective elastic modulus (e.g. 0.61 GPa at the porosity of 0.90). These results and the method developed in the present study provided important basis and guidance for the design and application of the TPMS-based porous structures.
Collapse
Affiliation(s)
- Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China
| | - Yi Huo
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Jia’ao Zou
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Yanchen Li
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Zhuoyue Yang
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Hanxing Zhu
- School of Engineering, Cardiff University, Cardiff, UK
| | - Chengwei Wu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, China
| |
Collapse
|
11
|
Davoodi E, Montazerian H, Zhianmanesh M, Abbasgholizadeh R, Haghniaz R, Baydia A, Pourmohammadali H, Annabi N, Weiss PS, Toyserkani E, Khademhosseini A. Template-Enabled Biofabrication of Thick 3D Tissues with Patterned Perfusable Macrochannels. Adv Healthc Mater 2022; 11:e2102123. [PMID: 34967148 PMCID: PMC8986588 DOI: 10.1002/adhm.202102123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/13/2021] [Indexed: 12/21/2022]
Abstract
Interconnected pathways in 3D bioartificial organs are essential to retaining cell activity in thick functional 3D tissues. 3D bioprinting methods have been widely explored in biofabrication of functionally patterned tissues; however, these methods are costly and confined to thin tissue layers due to poor control of low-viscosity bioinks. Here, cell-laden hydrogels that could be precisely patterned via water-soluble gelatin templates are constructed by economical extrusion 3D printed plastic templates. Tortuous co-continuous plastic networks, designed based on triply periodic minimal surfaces (TPMS), serve as a sacrificial pattern to shape the secondary sacrificial gelatin templates. These templates are eventually used to form cell-encapsulated gelatin methacryloyl (GelMA) hydrogel scaffolds patterned with the complex interconnected pathways. The proposed fabrication process is compatible with photo-crosslinkable hydrogels wherein prepolymer casting enables incorporation of high cell populations with high viability. The cell-laden hydrogel constructs are characterized by robust mechanical behavior. In vivo studies demonstrate a superior cell ingrowth into the highly permeable constructs compared to the bulk hydrogels. Perfusable complex interconnected networks within cell-encapsulated hydrogels may assist in engineering thick and functional tissue constructs through the permeable internal channels for efficient cellular activities in vivo.
Collapse
Affiliation(s)
- Elham Davoodi
- Multi-Scale Additive Manufacturing Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, United States
| | - Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, United States
| | - Masoud Zhianmanesh
- School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Reza Abbasgholizadeh
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, United States
| | - Avijit Baydia
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Homeyra Pourmohammadali
- Department of System Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ehsan Toyserkani
- Multi-Scale Additive Manufacturing Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, United States
| |
Collapse
|
12
|
Qin D, Sang L, Zhang Z, Lai S, Zhao Y. Compression Performance and Deformation Behavior of 3D-Printed PLA-Based Lattice Structures. Polymers (Basel) 2022; 14:polym14051062. [PMID: 35267883 PMCID: PMC8914831 DOI: 10.3390/polym14051062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
The aim of this study is to fabricate biodegradable PLA-based composite filaments for 3D printing to manufacture bear-loading lattice structures. First, CaCO3 and TCP as inorganic fillers were incorporated into a PLA matrix to fabricate a series of composite filaments. The material compositions, mechanical properties, and rheology behavior of the PLA/CaCO3 and PLA/TCP filaments were evaluated. Then, two lattice structures, cubic and Triply Periodic Minimal Surfaces-Diamond (TPMS-D), were geometrically designed and 3D-printed into fine samples. The axial compression results indicated that the addition of CaCO3 and TCP effectively enhances the compressive modulus and strength of lattice structures. In particular, the TPMS-D structure showed superior load-carrying capacity and specific energy absorption compared to those of its cubic counterparts. Furthermore, the deformation behavior of these two lattice structures was examined by image recording during compression and computed tomography (CT) scanning of samples after compression. It was observed that pore structure could be well held in TPMS-D, while that in cubic structure was destroyed due to the fracture of vertical struts. Therefore, this paper highlights promising 3D-printed biodegradable lattice structures with excellent energy-absorption capacity and high structural stability.
Collapse
Affiliation(s)
- Dongxue Qin
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (D.Q.); (S.L.)
| | - Lin Sang
- School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China; (L.S.); (Z.Z.)
| | - Zihui Zhang
- School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China; (L.S.); (Z.Z.)
| | - Shengyuan Lai
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (D.Q.); (S.L.)
| | - Yiping Zhao
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (D.Q.); (S.L.)
- Correspondence:
| |
Collapse
|
13
|
Shape optimization of orthopedic porous scaffolds to enhance mechanical performance. J Mech Behav Biomed Mater 2022; 128:105098. [DOI: 10.1016/j.jmbbm.2022.105098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022]
|
14
|
Sonatkar J, Kandasubramanian B. Bioactive glass with biocompatible polymers for bone applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Huo Y, Lu Y, Meng L, Wu J, Gong T, Zou J, Bosiakov S, Cheng L. A Critical Review on the Design, Manufacturing and Assessment of the Bone Scaffold for Large Bone Defects. Front Bioeng Biotechnol 2021; 9:753715. [PMID: 34722480 PMCID: PMC8551667 DOI: 10.3389/fbioe.2021.753715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, bone tissue engineering has emerged as a promising solution for large bone defects. Additionally, the emergence and development of the smart metamaterial, the advanced optimization algorithm, the advanced manufacturing technique, etc. have largely changed the way how the bone scaffold is designed, manufactured and assessed. Therefore, the aim of the present study was to give an up-to-date review on the design, manufacturing and assessment of the bone scaffold for large bone defects. The following parts are thoroughly reviewed: 1) the design of the microstructure of the bone scaffold, 2) the application of the metamaterial in the design of bone scaffold, 3) the optimization of the microstructure of the bone scaffold, 4) the advanced manufacturing of the bone scaffold, 5) the techniques for assessing the performance of bone scaffolds.
Collapse
Affiliation(s)
- Yi Huo
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China
| | - Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China
| | - Lingfei Meng
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Jiongyi Wu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Tingxiang Gong
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Jia’ao Zou
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Sergei Bosiakov
- Faculty of Mechanics and Mathematics, Belarus State University, Minsk, Belarus
| | - Liangliang Cheng
- Department of Orthopeadics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
16
|
Asbai-Ghoudan R, Ruiz de Galarreta S, Rodriguez-Florez N. Analytical model for the prediction of permeability of triply periodic minimal surfaces. J Mech Behav Biomed Mater 2021; 124:104804. [PMID: 34481309 DOI: 10.1016/j.jmbbm.2021.104804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/22/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022]
Abstract
Triply periodic minimal surfaces (TPMS) are mathematically defined cellular structures whose geometry can be quickly adapted to target desired mechanical response (structural and fluid). This has made them desirable for a wide range of bioengineering applications; especially as bioinspired materials for bone replacement. The main objective of this study was to develop a novel analytical framework which would enable calculating permeability of TPMS structures based on the desired architecture, pore size and porosity. To achieve this, computer-aided designs of three TPMS structures (Fisher-Koch S, Gyroid and Schwarz P) were generated with varying cell size and porosity levels. Computational Fluid Dynamics (CFD) was used to calculate permeability for all models under laminar flow conditions. Permeability values were then used to fit an analytical model dependent on geometry parameters only. Results showed that permeability of the three architectures increased with porosity at different rates, highlighting the importance of pore distribution and architecture. The computed values of permeability fitted well with the suggested analytical model (R2>0.99, p<0.001). In conclusion, the novel analytical framework presented in the current study enables predicting permeability values of TPMS structures based on geometrical parameters within a difference <5%. This model, which could be combined with existing structural analytical models, could open new possibilities for the smart optimisation of TPMS structures for biomedical applications where structural and fluid flow properties need to be optimised.
Collapse
Affiliation(s)
- Reduan Asbai-Ghoudan
- Department of Mechanical Engineering and Materials, Universidad de Navarra, TECNUN Escuela de Ingenieros, Paseo Manuel de Lardizabal, 13, 20018, San Sebastian, Spain.
| | - Sergio Ruiz de Galarreta
- Department of Mechanical Engineering and Materials, Universidad de Navarra, TECNUN Escuela de Ingenieros, Paseo Manuel de Lardizabal, 13, 20018, San Sebastian, Spain
| | - Naiara Rodriguez-Florez
- Department of Mechanical Engineering and Materials, Universidad de Navarra, TECNUN Escuela de Ingenieros, Paseo Manuel de Lardizabal, 13, 20018, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| |
Collapse
|
17
|
Jinga SI, Anghel AM, Brincoveanu SF, Bucur RM, Florea AD, Saftau BI, Stroe SC, Zamfirescu AI, Busuioc C. Ce/Sm/Sr-Incorporating Ceramic Scaffolds Obtained via Sol-Gel Route. MATERIALS 2021; 14:ma14061532. [PMID: 33800992 PMCID: PMC8003880 DOI: 10.3390/ma14061532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022]
Abstract
Three different inorganic scaffolds were obtained starting from the oxide system SiO2‒P2O5‒CaO‒MgO, to which Ce4+/Sm3+/Sr2+ cations were added in order to propose novel materials with potential application in the field of hard tissue engineering. Knowing the beneficial effects of each element, improved features in terms of mechanical properties, antibacterial activity and cellular response are expected. The compositions were processed in the form of scaffolds by a common sol-gel method, followed by a thermal treatment at 1000 and 1200 °C. The obtained samples were characterized from thermal, compositional, morphological and mechanical point of view. It was shown that each supplementary component triggers the modification of the crystalline phase composition, as well as microstructural details. Moreover, the shrinkage behavior is well correlated with the attained compression strength values. Sm was proven to be the best choice, since in addition to a superior mechanical resistance, a clear beneficial influence on the viability of 3T3 fibroblast cell line was observed.
Collapse
Affiliation(s)
- Sorin-Ion Jinga
- Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania;
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Ana-Maria Anghel
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Silvia-Florena Brincoveanu
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Raluca-Maria Bucur
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Andrei-Dan Florea
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Bianca-Irina Saftau
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Stefania-Cristina Stroe
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Andreea-Ioana Zamfirescu
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Cristina Busuioc
- Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania;
- Correspondence:
| |
Collapse
|
18
|
|
19
|
Correction: Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure. PLoS One 2020; 15:e0242181. [PMID: 33152036 PMCID: PMC7644001 DOI: 10.1371/journal.pone.0242181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|