1
|
Cao B, Kong H, Shen C, She G, Tian S, Liu H, Cui L, Zhang Y, He Q, Xia Q, Liu K. Dimethyl phthalate induced cardiovascular developmental toxicity in zebrafish embryos by regulating MAPK and calcium signaling pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171902. [PMID: 38521262 DOI: 10.1016/j.scitotenv.2024.171902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Dimethyl phthalate (DMP), the lowest-molecular-weight phthalate ester (PAE), is one of the most commonly detected persistent organic pollutants in the environment, but its toxic effects, especially cardiovascular developmental toxicity, are largely unknown. In this study, zebrafish embryos were exposed to sublethal concentrations of DMP from 4 to 96 hpf. Our results showed that DMP treatment induced yolk retention, pericardial edema, and swim bladder deficiency, as well as increased SV-BA distance and decreased heart rate, stroke volume, ventricular axis shortening rate and ejection fraction. In addition, oxidative stress and apoptosis were found to be highly involved in this process. The results of transcriptome sequencing and mRNA expression of related genes indicated that MAPK and calcium signaling pathways were perturbed by DMP. These findings have the potential to provide new insights into the potential developmental toxicity and cardiovascular disease risk of DMP.
Collapse
Affiliation(s)
- Bianneng Cao
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Haotian Kong
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Chuanlin Shen
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuimiao Tian
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Haojie Liu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Lishuang Cui
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China.
| |
Collapse
|
2
|
Elmotasem H, El-Marasy SA, Mohamed AL. Benzocaine mesoporous silica nanoparticles/bio polysaccharides-based hydrogels loaded cotton bandage as a platform for topical anesthesia. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
3
|
Collado-González M, Esteban MÁ. Chitosan-nanoparticles effects on mucosal immunity: A systematic review. FISH & SHELLFISH IMMUNOLOGY 2022; 130:1-8. [PMID: 36038102 DOI: 10.1016/j.fsi.2022.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/26/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Nanoparticles-based treatments is of utmost importance for aquaculture. In this scenario, chitosan-based nanoparticles have been proposed due to the properties of chitosan, which include mucoadhesiveness. Nevertheless, pivotal parameters of chitosan, such as degree of acetylation and molecular weight, are commonly underestimated in the available literature despite the influence they seem to have on the properties of chitosan-based nanoparticles. In this systematic review, the immunomodulator capacity of chitosan nanoparticles used as mucosal vaccines on teleost fish has been evaluated paying special attention to the chitosan properties. Four databases were used for literature search, yielding 486 documents, from which 14 meet the inclusion criteria. Only 21% of the available studies reported properly chitosan properties, which should be improved in future works to generate reproducible data as well as valuable information. To the best of our knowledge, this work objectively compares for the first time, by quantifying the mg of chitosan/g of fish applied in each study, the chitosan nanoparticle preparation and doses applied to fish, as well as the effects of the treatments applied on fish immune status.
Collapse
Affiliation(s)
- Mar Collado-González
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
4
|
Nguyen‐Huu A, Le NTT, Yen PND, Ching YC, Nguyen DH. Self‐assembly of methoxy poly(ethylene glycol)‐cholesterol micelles for controlled quercetin delivery with toxicity test in
Danio rerio
model. J Appl Polym Sci 2022. [DOI: 10.1002/app.52855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anh‐Minh Nguyen‐Huu
- Institute of Applied Materials Science Vietnam Academy of Science and Technology Ho Chi Minh Vietnam
- Department of Biotechnology International University‐Vietnam National University Ho Chi Minh Vietnam
| | - Ngoc Thuy Trang Le
- Institute of Applied Materials Science Vietnam Academy of Science and Technology Ho Chi Minh Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology Ha Noi Vietnam
| | - Pham Nguyen Dong Yen
- Institute of Applied Materials Science Vietnam Academy of Science and Technology Ho Chi Minh Vietnam
| | - Yern Chee Ching
- Department of Chemical Engineering University of Malaya Kuala Lumpur Malaysia
| | - Dai Hai Nguyen
- Institute of Applied Materials Science Vietnam Academy of Science and Technology Ho Chi Minh Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology Ha Noi Vietnam
| |
Collapse
|
5
|
Using Chitosan-Coated Polymeric Nanoparticles-Thermosensitive Hydrogels in association with Limonene as Skin Drug Delivery Strategy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9165443. [PMID: 35434138 PMCID: PMC9010220 DOI: 10.1155/2022/9165443] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Topical delivery of local anesthetics (LAs) is commonly used to decrease painful sensations, block pain throughout procedures, and alleviate pain after surgery. Dermal and/or transdermal delivery of LAs has other advantages, such as sustained drug delivery and decreased systemic adverse effects. This study reports the development of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles coated with chitosan for the sustained release and topicality of benzocaine (BZC) and topical delivery. BZC PLGA nanoparticles or nonencapsulated drugs were further incorporated into Poloxamer hydrogels (Pluronic™ F-127). The nanoparticles showed a mean diameter of 380 ± 4 nm, positive zeta potential after coating with chitosan (23.3 ± 1.7 mV), and high encapsulation efficiency (96.7 ± 0.02%). Cellular viability greater than 70% for both fibroblasts and keratinocytes was observed after treatment with nanoparticles, which is in accordance with the preconized guidelines for biomedical devices and delivery systems. Both the nanoparticles and hydrogels were able to modulate BZC delivery and increase drug permeation when compared to the nonencapsulated drug. Furthermore, the incorporation of limonene into hydrogels containing BZC-loaded nanoparticles increased the BZC permeation rates. Non-Newtonian and pseudoplastic behaviors were observed for all hydrogel nanoformulations with or without nanoparticles. These results demonstrate that the hydrogel-nanoparticle hybrids could be a promising delivery system for prolonged local anesthetic therapy.
Collapse
|
6
|
Zebrafish as a powerful alternative model organism for preclinical investigation of nanomedicines. Drug Discov Today 2022; 27:1513-1522. [DOI: 10.1016/j.drudis.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/28/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
|
7
|
de Andrade Belo MA, Charlie-Silva I. Teleost Fish as an Experimental Model for Vaccine Development. Methods Mol Biol 2022; 2411:175-194. [PMID: 34816405 DOI: 10.1007/978-1-0716-1888-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Advances in vaccine development depend on animal models to test innovative therapies. Recent studies have reported the successful introduction of teleost fish as a new vertebrate model in scientific research, with emphasis on the species Danio rerio (zebrafish). This chapter aims to give an overview of important aspects related to the immune system of fish, as well as the current progress of the successful use of these animals in studies for the development of vaccines, assisting in the determination of efficacy and clinical safety. Among the advantages of using fish for the development of vaccines and immunomodulatory drugs, it is worth highlighting the reproductive capacity of these animals resulting in a high number of individuals belonging to the same spawning, transparent embryos, low cost of breeding and high genetic similarity that favor translational responses to vertebrate organisms like humans.
Collapse
Affiliation(s)
| | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Free and nanoencapsulated curcumin prevents scopolamine-induced cognitive impairment in adult zebrafish. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Belo MAA, Oliveira MF, Oliveira SL, Aracati MF, Rodrigues LF, Costa CC, Conde G, Gomes JMM, Prata MNL, Barra A, Valverde TM, de Melo DC, Eto SF, Fernandes DC, Romero MGMC, Corrêa Júnior JD, Silva JO, Barros ALB, Perez AC, Charlie-Silva I. Zebrafish as a model to study inflammation: A tool for drug discovery. Biomed Pharmacother 2021; 144:112310. [PMID: 34678720 DOI: 10.1016/j.biopha.2021.112310] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022] Open
Abstract
This study aims to demonstrate the applicability and importance of zebrafish (Danio rerio) model to study acute and chronic inflammatory responses induced by different stimuli: carrageenan phlogogen (nonimmune); acute infection by bacteria (immune); foreign body reaction (chronic inflammation by round glass coverslip implantation); reaction induced by xenotransplantation. In addition to the advantages of presenting low breeding cost, high prolificity, transparent embryos, high number of individuals belonging to the same spawning and high genetic similarity that favor translational responses to vertebrate organisms like humans, zebrafish proved to be an excellent tool, allowing the evaluation of edema formation, accumulation of inflammatory cells in the exudate, mediators, signaling pathways, gene expression and production of specific proteins. Our studies demonstrated the versatility of fish models to investigate the inflammatory response and its pathophysiology, essential for the successful development of studies to discover innovative pharmacological strategies.
Collapse
Affiliation(s)
- Marco A A Belo
- Laboratory of Animal Pharmacology and Toxicology, Brazil University (UB), Descalvado, Brazil; Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Melque F Oliveira
- Laboratory of Animal Pharmacology and Toxicology, Brazil University (UB), Descalvado, Brazil
| | - Susana L Oliveira
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Mayumi F Aracati
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Letícia F Rodrigues
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Camila C Costa
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Gabriel Conde
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Juliana M M Gomes
- Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Mariana N L Prata
- Department of Physiology and Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ayslan Barra
- Department of Physiology and Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thalita M Valverde
- Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil; Department of Biochemistry and Immunology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Daniela C de Melo
- Department of zootechnics at the Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Silas F Eto
- Postgraduate Program in Health Sciences - PROCISA, Federal University of Roraima, Brazil
| | | | - Marina G M C Romero
- Department of Physiology and Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - José D Corrêa Júnior
- Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana O Silva
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Andre L B Barros
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Andrea C Perez
- Department of Physiology and Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ives Charlie-Silva
- Department of Pharmacology, University of São Paulo (ICB-USP), São Paulo, Brazil.
| |
Collapse
|
10
|
Charlie-Silva I, Feitosa NM, Fukushima HCS, Borra RC, Foglio MA, Xavier RMP, de Melo Hoyos DC, de Oliveira Sousa IM, de Souza GG, Bailone RL, de Andrade Belo MA, Correia SAM, Junior JDC, Pierezan F, Malafaia G. Effects of nanocapsules of poly-ε-caprolactone containing artemisinin on zebrafish early-life stages and adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143851. [PMID: 33257061 DOI: 10.1016/j.scitotenv.2020.143851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Artemisinin extracted from Artemisia annua L. plants has a range of properties that qualifies it to treat several diseases, such as malaria and cancer. However, it has short half-life, which requires making continuous use of it, which has motivated the association of artemisinin (ART) with polymeric nanoparticles to increase its therapeutic efficiency. However, the ecotoxicological safety of this association has been questioned, given the scarcity of studies in this area. Thus, in this work the toxicity of Poly (ε-Caprolactone) nanocapsules added with ART (ART-NANO) in zebrafish (Danio rerio), embryos and adults was studied. Different endpoints were analyzed in organisms exposed to ART-NANO, including those predictive of embryotoxicity and histopatoxicity. Embryotoxicity was analyzed based on Organization for Economic Co-operation and Development (OECD) test guideline (236) for fish embryo acute toxicity applied to zebrafish (Danio rerio) at 96 hpf under five nominal logarithmic concentrations (0.125 to 2.0 mg/ L). Our results demonstrate, mainly, that fertilized eggs presented increased coagulation, lack of heart rate, vitelline sac displacement and lack of somite formation. On the other hand, adult individuals (exposed to the same concentrations and evaluated after 24 and 96 h of exposure) have shown increased pericarditis. Therefore, the treatment based on ART, poly (ε-caprolactone) nanocapsules and on their combination at different concentrations have shown toxic effects on zebrafish embryos and adult individuals.
Collapse
Affiliation(s)
- Ives Charlie-Silva
- Pharmacology Department, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Natália Martins Feitosa
- Integrated Translational Biosciences Laboratory (LIBT), Biodiversity and Sustainability Institute (NUPEM), Federal University of Rio de Janeiro (UFRJ)- Macaé, RJ, Brazil
| | | | - Ricardo Carneiro Borra
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Mary Ann Foglio
- Pharmaceutical Sciences School, State University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | - Ricardo Lacava Bailone
- Ministry of Agriculture, Livestock and Supply, São Carlos, SP, Brazil; São Paulo State University, Botucatu, SP, Brazil
| | - Marco Antonio de Andrade Belo
- Ministry of Agriculture, Livestock and Supply, São Carlos, SP, Brazil; São Paulo State University, Botucatu, SP, Brazil
| | | | | | | | - Guilherme Malafaia
- Biological Sciences Department, Goiano Federal Institute, Urutaí, GO, Brazil.
| |
Collapse
|