1
|
Zhang Y, Ma X, Liu C, Bie Z, Liu G, Liu P, Yang Z. Identification of HSPD1 as a novel invasive biomarker associated with mitophagy in pituitary adenomas. Transl Oncol 2024; 41:101886. [PMID: 38290248 PMCID: PMC10840335 DOI: 10.1016/j.tranon.2024.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/26/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The crucial role of mitophagy in tumor progression has been recognized. Therefore, our study aimed to investigate the potential correlation between pituitary adenoma invasiveness and the mitophagy processes. METHODS In this study, we used transcriptomics of postoperative tissue from 32 patients and quantitative proteomics of 19 patients to screen for mitophagy-related invasion genes in pituitary adenomas. The invasive predictive value of target genes was analyzed by Lasso regression model, CytoHubba plugin and expression validation. Co-expression correlation analysis was used to identify paired proteins for target genes, and a predictive model for pituitary adenoma invasiveness was constructed by target genes and paired proteins and assessed using ROC analysis, calibration curves and DCA. GO function, pathway (GSEA or GSVA) and immune cell analysis (ssGSEA or CIBERSORT) were further utilized to explore the action mechanism of target gene. Finally, immunohistochemistry and cell function experiments were used to detect the differential expression and key roles of the target genes in pituitary adenomas. RESULTS Finally, Heat shock protein family D member 1 (HSPD1) was identified as a target gene. The quality of a predictive model for pituitary adenoma invasiveness consisting of HSPD1 and its paired protein expression profiles was satisfactory. Moreover, the expression of HSPD1 was significantly lower in invasive pituitary adenomas than in non-invasive pituitary adenomas. Downregulation of HSPD1 may be significantly related to invasion process, mitochondria-related pathway and immune cell regulation in pituitary adenomas. CONCLUSION The downregulation of HSPD1 may serve as a predictive indicator for identifying invasive pituitary adenomas.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Xin Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Congyu Liu
- School of Life Science, Tsinghua University, Beijing, PR China
| | - Zhixu Bie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Gemingtian Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.
| | - Zhijun Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
2
|
Huang Y, Zhou B. Mitochondrial Dysfunction in Cardiac Diseases and Therapeutic Strategies. Biomedicines 2023; 11:biomedicines11051500. [PMID: 37239170 DOI: 10.3390/biomedicines11051500] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria are the main site of intracellular synthesis of ATP, which provides energy for various physiological activities of the cell. Cardiomyocytes have a high density of mitochondria and mitochondrial damage is present in a variety of cardiovascular diseases. In this paper, we describe mitochondrial damage in mitochondrial cardiomyopathy, congenital heart disease, coronary heart disease, myocardial ischemia-reperfusion injury, heart failure, and drug-induced cardiotoxicity, in the context of the key roles of mitochondria in cardiac development and homeostasis. Finally, we discuss the main current therapeutic strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction, including pharmacological strategies, gene therapy, mitochondrial replacement therapy, and mitochondrial transplantation. It is hoped that this will provide new ideas for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yafei Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing 100037, China
| |
Collapse
|
3
|
Adebayo OG, Aduema W, Iwueke AV, Asiwe JN, Onyeleonu I, Akpotu AE, Wopara I, Adebayo OR, Onuoha OG, Eleazar ES, Onwuka FC. Treatment with Ginkgo biloba supplement modulates oxidative disturbances, inflammation and vascular functions in oxygen deprived hypothyroid mice: Involvement of endothelin-1/NO signaling pathways. J Food Biochem 2022; 46:e14477. [PMID: 36226765 DOI: 10.1111/jfbc.14477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023]
Abstract
A double-hit biological alteration involving exposure to oxygen deprivation in hypothyroid condition may exacerbate cellular oxidative and inflammatory disturbances comparative to a one-hit biological exposure. This study investigated the therapeutic effect of Ginkgo biloba as cardioprotective against aortic oxido-inflammatory disturbances following oxygen deprivation in hypothyroid mice. Male Swiss mice were partitioned into 5 groups (n = 6) for hypothyroidism (Carbimazole 1.2 mg/kg) and hypoxia induction. Group 1 (normal control), group 2 (hypoxic stress control), group 3 (hypoxic and hypothyroid stress), group 4 (hypoxic and hypothyroid stress and Ginkgo biloba 20 mg/kg; p.o) and group 5 (hypoxic and hypothyroid stress and Levothyroxine 10 μg/kg; p.o) for 14 days. Thereafter, serum and aorta was collected for biochemical evaluation. GBS did not up-regulate the serum thyroid hormone imbalances (tri-iodothyronine (T3), thyroxin (T4)) but maintains the TSH levels. The blood glucose level was reduced with decrease oxidative stress and inflammatory mediators in the serum/aorta indicated by inhibited redox status following treatment with GBS. Moreover, endothelin-1/nitric oxide signaling pathways were markedly regulated in the aorta. Conclusively, GBS acts as a therapeutic agent and may be consider as a potential vasodilator candidate in the management and control of hypoxic stress in hypothyroid condition. PRACTICAL APPLICATIONS: Treatment with Gingko biloba supplement abated endothelial abnormalities via elevation of nitric oxide release and suppression of endothelin activity in hypothyroid mice exposed to hypoxic hypoxia. The activity of myeloperoxidase enzyme and redo-inflammatory status was downregulated following treatment with Gingko biloba supplement in hypothyroid mice exposed to hypoxic hypoxia. Treatment with Gingko biloba supplement modulates hypothalamic-pituitary-adrenal (HPA) axis by inhibiting corticosterone release in hypothyroid mice exposed to hypoxic hypoxia.
Collapse
Affiliation(s)
- Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Wadioni Aduema
- Department of Physiology, Faculty of Basic Medical Sciences, Bayelsa Medical University, Yenagoa, Nigeria
| | - Adaku V Iwueke
- Department of Biochemistry, Faculty of Science and Computing, University of Agriculture and Environmental Sciences, Umuagwo, Nigeria
| | - Jerome N Asiwe
- Cardiorespiratory Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Ijeoma Onyeleonu
- Department of Anatomy, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Ajirioghene E Akpotu
- Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Iheanyichukwu Wopara
- Department of Biochemistry, Faculty of Sciences, University of Port Harcourt, Port Harcourt, Nigeria
| | - Oluwakemi Rachael Adebayo
- Department of Human Nutrition and Dietetics, Faculty of Public Health, University of Ibadan, Ibadan, Nigeria
| | - Ogechukwu G Onuoha
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Emeka Spiff Eleazar
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Favour C Onwuka
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| |
Collapse
|
4
|
Lu Z, Liu Z, Fang B. Propofol protects cardiomyocytes from doxorubicin-induced toxic injury by activating the nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4 signaling pathways. Bioengineered 2022; 13:9145-9155. [PMID: 35363601 PMCID: PMC9161918 DOI: 10.1080/21655979.2022.2036895] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Propofol offers important protective effects in ischemia/reperfusion-induced cardiomyocyte injury, but its specific mechanisms in doxorubicin (DOX)-induced cardiotoxicity have not been investigated. In this paper, we attempted to explore the effects of propofol on DOX-induced human cardiomyocyte injury and its related mechanisms. H9c2 cell viability was assessed by cell counting kit-8 and lactate dehydrogenase assay kit. Nuclear factor erythroid 2-related factor 2 (NRF2)/glutathione peroxidase 4 (GPx4) signaling pathway-related protein levels were measured by Western blot. Ferroptosis was evaluated by corresponding kits and Western blot and apoptosis was detected by CCK-8, terminal deoxynucleotidyl transferase dUTP nick-end labeling and Western blot. Oxidative stress was assessed by reactive oxygen species kit and the commercial kits, and inflammation response was analyzed by enzyme-linked immunosorbent assay and Western blot. The results showed that propofol attenuated DOX-induced cytotoxicity and activated Nrf2/GPx4 signaling pathways in H9c2 cells. In addition, propofol also alleviated DOX-induced ferroptosis, increased cell viability and inhibited apoptosis, oxidative stress and inflammatory responses in H9c2 cells through activation of Nrf2/GPx4 signaling pathways. In summary, propofol provides the protection against DOX-induced cardiomyocyte injury by activating Nrf2/GPx4 signaling, providing a new approach and theoretical basis for the repair of cardiomyocytes.
Collapse
Affiliation(s)
- Ziyun Lu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiyi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bei Fang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Han J, Tao W, Cui W, Chen J. Propofol via Antioxidant Property Attenuated Hypoxia-Mediated Mitochondrial Dynamic Imbalance and Malfunction in Primary Rat Hippocampal Neurons. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6298786. [PMID: 35087616 PMCID: PMC8789416 DOI: 10.1155/2022/6298786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/24/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Hypoxia may induce mitochondrial abnormality, which is associated with a variety of clinical phenotypes in the central nervous system. Propofol is an anesthetic agent with neuroprotective property. We examined whether and how propofol protected hypoxia-induced mitochondrial abnormality in neurons. METHODS Primary rat hippocampal neurons were exposed to propofol followed by hypoxia treatment. Neuron viability, mitochondrial morphology, mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) production were measured. Mechanisms including reactive oxygen species (ROS), extracellular regulated protein kinase (ERK), protein kinase A (PKA), HIF-1α, Drp1, Fis1, Mfn1, Mfn2, and Opa1 were investigated. RESULTS Hypoxia increased intracellular ROS production and induced mPTP opening, while reducing ATP production, MMP values, and neuron viability. Hypoxia impaired mitochondrial dynamic balance by increasing mitochondrial fragmentation. Further, hypoxia induced the translocation of HIF-1α and increased the expression of Drp1, while having no effect on Fis1 expression. In addition, hypoxia induced the phosphorylation of ERK and Drp1ser616, while reducing the phosphorylation of PKA and Drp1ser637. Importantly, we demonstrated all these effects were attenuated by pretreatment of neurons with 50 μM propofol, antioxidant α-tocopherol, and ROS scavenger ebselen. Besides, hypoxia, propofol, α-tocopherol, or ebselen had no effect on the expression of Mfn1, Mfn2, and Opa1. CONCLUSIONS In rat hippocampal neurons, hypoxia induced oxidative stress, caused mitochondrial dynamic imbalance and malfunction, and reduced neuron viability. Propofol protected mitochondrial abnormality and neuron viability via antioxidant property, and the molecular mechanisms involved HIF-1α-mediated Drp1 expression and ERK/PKA-mediated Drp1 phosphorylation.
Collapse
Affiliation(s)
- Jingfeng Han
- Department of Anesthesiology, Jing'an District Central Hospital, No. 259 Xi Kang Road, Shanghai 200040, China
| | - Weiping Tao
- Department of Anesthesiology, Jing'an District Central Hospital, No. 259 Xi Kang Road, Shanghai 200040, China
| | - Wei Cui
- Department of Anesthesiology, Jing'an District Central Hospital, No. 259 Xi Kang Road, Shanghai 200040, China
| | - Jiawei Chen
- Department of Anesthesiology, Jing'an District Central Hospital, No. 259 Xi Kang Road, Shanghai 200040, China
| |
Collapse
|
6
|
Song K, Li B, Chen YY, Wang H, Liu KC, Tan W, Zou J. LRPPRC regulates metastasis and glycolysis by modulating autophagy and the ROS/HIF1-α pathway in retinoblastoma. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:582-591. [PMID: 34589577 PMCID: PMC8450181 DOI: 10.1016/j.omto.2021.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022]
Abstract
Retinoblastoma (RB) is the most common intraocular tumor among children. Leucine-rich pentatricopeptide repeat (PPR)-motif-containing protein (LRPPRC), a suppressor gene of autophagy, has been proven to play a regulatory role in tumor progression. However, little is known about functional roles and mechanisms of LRPPRC in RB progression. First, we performed a detailed analysis for RB and normal control. The expression of LRPPRC in the RB tissues was significantly higher than that in normal tissues. Moreover, LRPPRC suppression could repress tumor cell migration, invasion, glycolysis, and reactive oxygen species (ROS)/hypoxia-inducible factor-1α (HIF1-α) pathway activation by mediating autophagy. Furthermore, overexpression of HIF1-α partially reversed the above changes induced by LRPPRC knockdown. The regulation of LRPPRC on tumor metastasis and glycolysis was also validated by a xenograft tumor assay. In summary, LRPPRC could regulate metastasis and glycolysis of RB by mediating autophagy suppression and further activating the ROS/HIF1-α pathway, and LRPPRC could be a promising prognostic biomarker for RB.
Collapse
Affiliation(s)
- Kun Song
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Ying-Ying Chen
- Department of Ophthalmology, Hainan General Hospital, Haikou 570000, Hainan Province, China
| | - Hua Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China.,Hunan Key Laboratory of Ophthalmology, No. 87 Xiangya Road, Kaifu District, Changsha 410008, Hunan Province, China
| | - Kang-Cheng Liu
- Eye Center of Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China.,Hunan Key Laboratory of Ophthalmology, No. 87 Xiangya Road, Kaifu District, Changsha 410008, Hunan Province, China
| | - Wei Tan
- Eye Center of Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China.,Hunan Key Laboratory of Ophthalmology, No. 87 Xiangya Road, Kaifu District, Changsha 410008, Hunan Province, China
| | - Jing Zou
- Eye Center of Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China.,Hunan Key Laboratory of Ophthalmology, No. 87 Xiangya Road, Kaifu District, Changsha 410008, Hunan Province, China
| |
Collapse
|
7
|
Dai Z, Lin M, Li Y, Gao W, Wang P, Lin J, Wan Z, Jiang Y. Sevoflurane-Remifentanil Versus Propofol-Remifentanil Anesthesia During Noncardiac Surgery for Patients with Coronary Artery Disease - A Prospective Study Between 2016 and 2017 at a Single Center. Med Sci Monit 2021; 27:e929835. [PMID: 34417434 PMCID: PMC8386244 DOI: 10.12659/msm.929835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Volatile anesthesia possesses cardioprotective properties, and it is widely used in patients undergoing coronary artery bypass surgery, but no randomized controlled trials (RCTs) are available on the use of sevoflurane-remifentanil versus propofol-remifentanil anesthesia for patients with coronary artery disease (CAD) during noncardiac surgery. This study was designed to compare the 2 different types of general anesthesia in patients with CAD undergoing noncardiac surgery at a single center. MATERIAL AND METHODS Patients with CAD undergoing noncardiac surgery were enrolled in an RCT conducted between March 2016 and December 2017. The participants were randomized to receive either sevoflurane-remifentanil or propofol-remifentanil anesthesia. The primary endpoint was occurrence of in-hospital cardiovascular events. The secondary endpoints included delirium, postoperative nausea and vomiting (PONV), Intensive Care Unit (ICU) length of stay (LOS), in-hospital morbidity and mortality, and hospital LOS. RESULTS A total of 164 participants completed the study (sevoflurane: 81; propofol: 83). The occurrence of in-hospital cardiovascular events did not differ between the 2 groups (42.6% vs 39.4%, P=0.86). The occurrence of delirium did not differ between the 2 groups after the operation. PONV had a higher frequency after sevoflurane anesthesia at 48 h compared with propofol. In-hospital morbidity and mortality, ICU LOS, and hospital LOS were similar between the 2 groups (all P>0.05). At 30 days after surgery, no between-group differences in cardiac morbidity and mortality were observed. CONCLUSIONS In this study, anesthesia using sevoflurane-remifentanil did not provide additional postoperative cardioprotection in comparison with propofol-remifentanil in patients with CAD undergoing noncardiac surgery.
Collapse
Affiliation(s)
- Zhongliang Dai
- Department of Anesthesiology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China (mainland)
| | - Miao Lin
- Department of Anesthesiology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China (mainland)
| | - Yali Li
- Department of Anesthesiology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China (mainland)
| | - Wenli Gao
- Department of Anesthesiology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China (mainland)
| | - Ping Wang
- Department of Anesthesiology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China (mainland)
| | - Juan Lin
- Department of Anesthesiology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China (mainland)
| | - Zhenzhen Wan
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, China (mainland)
| | - Yuanxu Jiang
- Department of Anesthesiology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
8
|
Yan J, Song K, Zhou S, Ge RL. Long-Term High-Fat Diet Inhibits the Recovery of Myocardial Mitochondrial Function After Chronic Hypoxia Reoxygenation in Rats. High Alt Med Biol 2021; 22:327-334. [PMID: 34191588 DOI: 10.1089/ham.2021.0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Yan, Jun, Kang Song, Sisi Zhou, and Ri-Li Ge. Long-term high-fat diet inhibits the recovery of myocardial mitochondrial function after chronic hypoxia reoxygenation in rats. High Alt Med Biol. 16:000-000, 2021. Aims: A high-fat diet (HFD) is associated with cardiovascular diseases and mitochondrial dysfunction. Obesity incidence is low at high altitudes, but the impact of HFD, which is closely associated with obesity at high altitudes, and the effects of reoxygenation on the heart are unclear. In this study, we investigated the effects of long-term HFD consumption on mitochondrial function in the myocardium after chronic hypoxia reoxygenation. Main Methods: Sprague-Dawley rats were randomized into the following six groups: normoxia groups, including a control group and HFD group; chronic hypoxia groups, including a normal chow diet (CH-CD) group and an HFD (CH-HFD) group; and hypoxic-reoxygenated (HR) groups, including a hypoxia-reoxygenation normal chow diet (HR-CD) group and a hypoxia-reoxygenation HFD (HR-HFD) group. All rats were euthanized in this study. Results: We found that chronic hypoxia aggravated myocardial mitochondrial dysfunction. The Flameng score (in which the higher the score, the more severe the mitochondrial damage) was used to assess the extent of mitochondrial structural damage. Compared with the control group and HFD group, the Flameng scores of the CH-CD and CH-HFD groups were significantly increased, respectively [1.260 ± 0.063 vs. 0.68 ± 0.05 (p < 0.05); 2.03 ± 0.07 vs. 1.48 ± 0.05 (p < 0.05)]. Moreover, progressive reoxygenation facilitated the recovery of myocardial mitochondrial function; this process was inhibited by long-term HFD. After reoxygenation, the Flameng scores in the HR-CD group became comparable to those in the CH-CD group [0.86 ± 0.05 vs. 1.26 ± 0.06 (p < 0.05)]. However, no significant changes were observed in the Flameng score between the HR-HFD and CH-HFD groups. Significance: Long-term HFD consumption inhibits myocardial mitochondrial function after reoxygenation. This finding may be helpful for the prevention and control of risk factors related to cardiovascular diseases in plateau residents.
Collapse
Affiliation(s)
- Jun Yan
- Research Center for High Altitude Medicine, Qinghai University, Xining, P.R. China.,Key Laboratory of High-Altitude Medicine (Qinghai University), Ministry of Education, Xining, P.R. China.,Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, P.R. China.,Cardiovascular Medicine Department, Xuzhou Medical University Affiliated Hospital, Xuzhou, P.R. China
| | - Kang Song
- Endocrinology Department, Qinghai Provincial People's Hospital, Xining, P.R. China
| | - Sisi Zhou
- Research Center for High Altitude Medicine, Qinghai University, Xining, P.R. China.,Key Laboratory of High-Altitude Medicine (Qinghai University), Ministry of Education, Xining, P.R. China.,Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, P.R. China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, P.R. China.,Key Laboratory of High-Altitude Medicine (Qinghai University), Ministry of Education, Xining, P.R. China.,Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, P.R. China
| |
Collapse
|