1
|
Walt HK, King JG, Sheele JM, Meyer F, Pietri JE, Hoffmann FG. Do bed bugs transmit human viruses, or do humans spread bed bugs and their viruses? A worldwide survey of the bed bug RNA virosphere. Virus Res 2024; 343:199349. [PMID: 38431055 PMCID: PMC10982078 DOI: 10.1016/j.virusres.2024.199349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
BED BUGS: (Hemiptera: Cimicidae) are a globally distributed hematophagous pest that routinely feed on humans. Unlike many blood-sucking arthropods, they have never been linked to pathogen transmission in a natural setting, and despite increasing interest in their role as disease vectors, little is known about the viruses that bed bugs naturally harbor. Here, we present a global-scale survey of the bed bug RNA virosphere. We sequenced the metatranscriptomes of 22 individual bed bugs (Cimex lectularius and Cimex hemipterus) from 8 locations around the world. We detected sequences from two known bed bug viruses (Shuangao bedbug virus 1 and Shuangao bedbug virus 2) which extends their geographical range. We identified three novel bed bug virus sequences from a tenui-like virus (Bunyavirales), a toti-like virus (Ghabrivirales), and a luteo-like virus (Tolivirales). Interestingly, some of the bed bug viruses branch near to insect-transmitted plant-infecting viruses, opening questions regarding the evolution of plant virus infection. When we analyzed the viral sequences by their host's collection location, we found unexpected patterns of geographical diversity that may reflect humans' role in bed bug dispersal. Additionally, we investigated the effect that Wolbachia, the primary bed bug endosymbiont, may have on viral abundance and found that Wolbachia infection neither promotes nor inhibits viral infection. Finally, our results provide no evidence that bed bugs transmit any known human pathogenic viruses.
Collapse
Affiliation(s)
- Hunter K Walt
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Jonas G King
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Johnathan M Sheele
- Department of Emergency Medicine, University Hospitals Cleveland Medical Center & Case Western Reserve University, Cleveland, OH, USA
| | - Florencia Meyer
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Jose E Pietri
- Sanford School of Medicine, Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, USA.
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
2
|
Abrahamian P, Grinstead S, Kinard GR, Goenaga R, Rott P, Mollov D. Complete sequence and genome characterization of miscanthus virus M, a new betaflexivirus from Miscanthus sp. Arch Virol 2024; 169:27. [PMID: 38214767 DOI: 10.1007/s00705-024-05966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
A novel betaflexivirus, tentatively named "miscanthus virus M" (MiVM), was isolated from Miscanthus sp. The complete genome of MiVM is 7,388 nt in length (excluding the poly(A) tail). It contains five open reading frames and has a genome organization similar to those of members of the families Alphaflexiviridae and Betaflexiviridae (subfamily Quinvirinae). The amino acid sequences of both the replicase and coat protein shared less than 45% identity with the corresponding sequences of members of either family. Phylogenetic analysis confirmed that MiVM belongs to the family Betaflexiviridae and subfamily Quinvirinae but it was too distantly related to be included in any currently recognized genus in this family. We therefore propose that miscanthus virus M represents a new species and a new genus in the family Betaflexiviridae.
Collapse
Affiliation(s)
- Peter Abrahamian
- USDA-ARS National Germplasm Resources Laboratory, Beltsville, MD, USA.
| | - Samuel Grinstead
- USDA-ARS National Germplasm Resources Laboratory, Beltsville, MD, USA
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, MD, USA
| | - Gary R Kinard
- USDA-ARS National Germplasm Resources Laboratory, Beltsville, MD, USA
| | - Ricardo Goenaga
- USDA-ARS Tropical Agriculture Research Station, Mayaguez, PR, USA
| | - Philippe Rott
- CIRAD, UMR PHIM, Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Dimitre Mollov
- USDA-ARS National Germplasm Resources Laboratory, Beltsville, MD, USA.
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, 97330, USA.
| |
Collapse
|
3
|
Complete genome sequence of a novel potyvirus infecting Miscanthus sinensis (silver grass). Arch Virol 2022; 167:1701-1705. [PMID: 35579714 PMCID: PMC9234030 DOI: 10.1007/s00705-022-05445-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/07/2022] [Indexed: 11/02/2022]
Abstract
Here, we describe the full-length genome sequence of a novel potyvirus, tentatively named "Miscanthus sinensis mosaic virus" (MsiMV), isolated from Miscanthus sinensis (silver grass) held in a post-entry quarantine facility after being imported into Western Australia, Australia. The MsiMV genome is 9604 nucleotides (nt) in length, encoding a 3071-amino-acid (aa) polyprotein with conserved sequence motifs. The MsiMV genome is most closely related to that of sorghum mosaic virus (SrMV), with 74% nt and 78.5% aa sequence identity to the SrMV polyprotein region. Phylogenetic analysis based on the polyprotein grouped MsiMV with SrMV, sugarcane mosaic virus (SCMV), and maize dwarf mosaic virus (MDMV). This is the first report of a novel monopartite ssRNA virus in Miscanthus sinensis related to members of the genus Potyvirus in the family Potyviridae.
Collapse
|