1
|
Anastasopoulos E, Koronis S, Matsou A, Dermenoudi M, Ziakas N, Tzamalis A. Safety and Efficacy of Prostaglandin Analogues in the Immediate Postoperative Period after Uneventful Phacoemulsification. Vision (Basel) 2023; 7:45. [PMID: 37368818 DOI: 10.3390/vision7020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Prostaglandin analogues (PGAs) have been associated with the development of pseudophakic macular edema (PME) in complicated cataract cases, but evidence on their effects in uncomplicated phacoemulsification remains controversial. This two-arm, prospective, randomised study included patients with glaucoma or ocular hypertension under PGA monotherapy who were scheduled for cataract surgery. The first group continued PGA use (PGA-on), while the second discontinued PGAs for the first postoperative month and reinitiated use afterwards (PGA-off). Topical non-steroidal anti-inflammatory drugs (NSAIDs) were routinely administered to all patients during the first postoperative month. The patients were followed up for three months and the primary outcome was PME development. Secondary outcomes were corrected distance visual acuity (CDVA), central and average macular thickness (CMT and AMT), and intraocular pressure (IOP). The analysis included 22 eyes in the PGA-on group and 33 eyes in the PGA-off group. No patient developed PME. CDVA was not significantly different between the two groups (p = 0.83). CMT and AMT showed a small but statistically significant increase until the end of follow-up (p < 0.001). Mean IOP values had no significant differences between the groups at each visit (p > 0.05). At the end of follow-up, the IOP values were significantly lower than baseline in both groups (p < 0.001). In conclusion, PGA administration with concomitant topical NSAIDs appears to be a safe practice in the early postoperative period of uncomplicated phacoemulsification.
Collapse
Affiliation(s)
| | - Spyridon Koronis
- Department of Ophthalmology, General Hospital Papageorgiou, 56429 Thessaloniki, Greece
| | - Artemis Matsou
- Corneoplastic Unit, Queen Victoria Hospital, East Grinstead RH19 3DZ, UK
| | - Maria Dermenoudi
- Department of Ophthalmology, General Hospital Papageorgiou, 56429 Thessaloniki, Greece
| | - Nikolaos Ziakas
- Department of Ophthalmology, General Hospital Papageorgiou, 56429 Thessaloniki, Greece
| | - Argyrios Tzamalis
- Department of Ophthalmology, General Hospital Papageorgiou, 56429 Thessaloniki, Greece
| |
Collapse
|
2
|
Zhou J, Huang Q, Wang L, Li E, Huang W, Xiang Z. Autophagy Protects Ocular Surface Against Overactivated Inflammation by Degrading Retinoic Acid-Induced Gene-I in Human Conjunctival Epithelial Cells. J Ocul Pharmacol Ther 2022; 38:331-338. [PMID: 35613408 DOI: 10.1089/jop.2021.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Purpose: To evaluate the pathological role of autophagy in dry eye diseases by detecting the autophagic degradation of RIG-I, a master RNA-sensing receptor in cells. Methods: RNA-sequencing analysis and qPCR analysis of the expression level of genes related to IFN-I signaling pathway was used to evaluate the inflammatory level of cells overexpressed with RIG-I or empty vector, which was further confirmed by WB analysis. Chemical treatment (3-methyladenine, chloroquine, NH4Cl, rapamycin, torin 1 or trehalose) or gene knockdown was used to modulate autophagy. When the autophagy level was regulated, the autophagic degradation of RIG-I and its pathological role in dry eye diseases were determined by detecting the protein level of RIG-I and the level of cell inflammation. Results: Cells that overexpressed RIG-I showed increased expression of genes involved in the IFN-I signaling pathway compared with cells transfected with an empty vector. Inhibition of autophagy leaded to the accumulation of RIG-I in HCECs, combined with the aggravation of the RIG-I-mediated IFN-I signaling pathway. Contrarily, promoting the autophagic degradation of RIG-I by trehalose treatment could alleviate IFN-I signaling pathway. Conclusions: Autophagy could protect the ocular surface against IFN-I signaling pathway by degrading RIG-I in HCECs. This process may restrict the overactivation of inflammation in the pathological development of dry eye disease.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Qinzhu Huang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Ledan Wang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Enhui Li
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Wenjuan Huang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Zhenyang Xiang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| |
Collapse
|
3
|
Takashima Y, Isogawa Y, Tsuboi A, Ogawa N, Kobayashi Y. Synthesis of a TNF inhibitor, flurbiprofen and an i-Pr analogue in enantioenriched forms by copper-catalyzed propargylic substitution with Grignard reagents. Org Biomol Chem 2021; 19:9906-9909. [PMID: 34734958 DOI: 10.1039/d1ob01944a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The copper-catalyzed substitution reaction of diethyl phosphate derived from TMSCCCH(OH)CH2CH2OTBDPS with 3-c-C5H9-4-MeOC6H3MgBr, followed by several transformations, afforded a tumor necrosis factor inhibitor possessing a Ph-acetylene moiety. The inhibitor was also synthesized from phenylacetylene phosphate PhCCCH(OP(O)(OEt)2)CH2CH2OTBDPS. Furthermore, the substitution of phosphates derived from TMSCCCH(OH)CH3 and TMSCCCH(OH)-i-Pr with 3-F-4-PhC6H3MgBr gave the corresponding substitution products, which were transformed to flurbiprofen and its i-Pr analogue, respectively. The copper-catalyzed substitutions in these syntheses proceeded in a regio- and stereoselective manner.
Collapse
Affiliation(s)
- Yuji Takashima
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Yukari Isogawa
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Atsuki Tsuboi
- Department of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Narihito Ogawa
- Department of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Yuichi Kobayashi
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan.,Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| |
Collapse
|
4
|
Raga-Cervera J, Bolarin JM, Millan JM, Garcia-Medina JJ, Pedrola L, Abellán-Abenza J, Valero-Vello M, Sanz-González SM, O’Connor JE, Galarreta-Mira D, Bendala-Tufanisco E, Mayordomo-Febrer A, Pinazo-Durán MD, Zanón-Moreno V. miRNAs and Genes Involved in the Interplay between Ocular Hypertension and Primary Open-Angle Glaucoma. Oxidative Stress, Inflammation, and Apoptosis Networks. J Clin Med 2021; 10:jcm10112227. [PMID: 34063878 PMCID: PMC8196557 DOI: 10.3390/jcm10112227] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma has no cure and is a sight-threatening neurodegenerative disease affecting more than 100 million people worldwide, with primary open angle glaucoma (POAG) being the most globally prevalent glaucoma clinical type. Regulation of gene expression and gene networks, and its multifactorial pathways involved in glaucoma disease are landmarks for ophthalmic research. MicroRNAs (miRNAs/miRs) are small endogenous non-coding, single-stranded RNA molecules (18–22 nucleotides) that regulate gene expression. An analytical, observational, case-control study was performed in 42 patients of both sexes, aged 50 to 80 years, which were classified according to: (1) suffering from ocular hypertension (OHT) but no glaucomatous neurodegeneration (ND) such as the OHT group, or (2) have been diagnosed of POAG such as the POAG group. Participants were interviewed for obtaining sociodemographic and personal/familial records, clinically examined, and their tear samples were collected and frozen at 80 °C until processing for molecular-genetic assays. Tear RNA extraction, libraries construction, and next generation sequencing were performed. Here, we demonstrated, for the first time, the differential expression profiling of eight miRNAs when comparing tears from the OHT versus the POAG groups: the miR-26b-5p, miR-152-3p, miR-30e-5p, miR-125b-2-5p, miR-224-5p, miR-151a-3p, miR-1307-3p, and the miR-27a-3p. Gene information was set up from the DIANA-TarBase v7, DIANA-microT-CDS, and TargetScan v7.1 databases. To build a network of metabolic pathways, only genes appearing in at least four of the following databases: DisGeNet, GeneDistiller, MalaCards, OMIM PCAN, UniProt, and GO were considered. We propose miRNAs and their target genes/signaling pathways as candidates for a better understanding of the molecular-genetic bases of glaucoma and, in this way, to gain knowledge to achieve optimal diagnosis strategies for properly identifying HTO at higher risk of glaucoma ND. Further research is needed to validate these miRNAs to discern the potential role as biomarkers involved in oxidative stress, immune response, and apoptosis for the diagnosis and/or prognosis of OHT and the prevention of glaucoma ND.
Collapse
Affiliation(s)
| | - Jose M. Bolarin
- Technological Centre of Information and Communication Technologies (CENTIC), 30100 Murcia, Spain; (J.M.B.); (J.A.-A.)
| | - Jose M. Millan
- Sequencing Service at the University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (J.M.M.); (L.P.)
| | - Jose J. Garcia-Medina
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (J.J.G.-M.); (M.V.-V.); (M.D.P.-D.); (V.Z.-M.)
- Department of Ophthalmology, General University Hospital “Morales Meseguer”, 30007 Murcia, Spain
- Department of Ophthalmology and Optometry, University of Murcia, 30120 Murcia, Spain
- Spanish Net of Ophthalmic Research OFTARED RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.-T.); (A.M.-F.)
| | - Laia Pedrola
- Sequencing Service at the University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (J.M.M.); (L.P.)
| | - Javier Abellán-Abenza
- Technological Centre of Information and Communication Technologies (CENTIC), 30100 Murcia, Spain; (J.M.B.); (J.A.-A.)
| | - Mar Valero-Vello
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (J.J.G.-M.); (M.V.-V.); (M.D.P.-D.); (V.Z.-M.)
| | - Silvia M. Sanz-González
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (J.J.G.-M.); (M.V.-V.); (M.D.P.-D.); (V.Z.-M.)
- Spanish Net of Ophthalmic Research OFTARED RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.-T.); (A.M.-F.)
- Cellular and Molecular Ophthalmobiology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Correspondence:
| | - José E. O’Connor
- Laboratory of Cytomics, Joint Research Unit Principe Felipe Research Center and University of Valencia, 46010 Valencia, Spain;
| | | | - Elena Bendala-Tufanisco
- Spanish Net of Ophthalmic Research OFTARED RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.-T.); (A.M.-F.)
- Mixed Research Unit for Visual Health and Veterinary Ophthalmology CEU/FISABIO, 46020 Valencia, Spain
- Physiology Department, Faculty of Health Sciences, CEU University, Alfara del Patriarca, 46115 Valencia, Spain
| | - Aloma Mayordomo-Febrer
- Spanish Net of Ophthalmic Research OFTARED RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.-T.); (A.M.-F.)
- Mixed Research Unit for Visual Health and Veterinary Ophthalmology CEU/FISABIO, 46020 Valencia, Spain
- Animal Medicine and Surgery Department, Veterinary Medicine Faculty, CEU University, Alfara del Patriarca, 46115 Valencia, Spain
| | - Maria D. Pinazo-Durán
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (J.J.G.-M.); (M.V.-V.); (M.D.P.-D.); (V.Z.-M.)
- Spanish Net of Ophthalmic Research OFTARED RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.-T.); (A.M.-F.)
- Cellular and Molecular Ophthalmobiology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Vicente Zanón-Moreno
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (J.J.G.-M.); (M.V.-V.); (M.D.P.-D.); (V.Z.-M.)
- Spanish Net of Ophthalmic Research OFTARED RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.-T.); (A.M.-F.)
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
| |
Collapse
|