1
|
Yang L, Pan W, Cai Q, An M, Wang C, Pan X. The research trend on neurobrucellosis over the past 30 years (1993-2023): a bibliometric and visualization analysis. Front Neurol 2024; 15:1349530. [PMID: 39381075 PMCID: PMC11460295 DOI: 10.3389/fneur.2024.1349530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Background Brucellosis is a zoonotic disease caused by Brucella infection, which is common in pastoral areas. Neurological involvement in brucellosis is relatively rare. But since 1993, continuous studies have been reporting neurological complications of brucellosis, collectively referred to as neurobrucellosis. A bibliometric analysis of existing literature outlines current research progress and gaps and provides guidance for the clinical treatment of neurobrucellosis, promoting patient health in the process of guiding clinical practice, and improving their quality of life. Methods CiteSpace and VOSviewer are software tools to visualize research trends and networks. By selecting specific areas of interest and configuring the right parameters, the tools can visualize past research data. The study retrieved the literature from the Web of Science Core Collection Database and downloaded it in plain text file format. Citespace6.1.6, VOSviewer v1.6.20, and Microsoft Excel 16.59 were used for analyzing the following terms: countries, institutions, authors' cooperation, journals, keywords, and co-citation. Results There are eight key results. (1) The publication volume shows a general upward trend. (2) Turkey is the country with the highest publication volume and contributing institutions. (3) Giambartolomei GH, Gul HC, and Namiduru M are the authors with the highest number of publications. (4) Neurology is the journal that published the highest number of related articles (n = 12). (5) "Diagnosis," "meningitis," and "features" are the top three frequently occurring keywords. (6) Keyword clusters show "antibiotic therapy" and "cerebrospinal fluid" have future study value. (7) The burst analysis of the keywords also indicates that "cerebrospinal fluid" may become a prominent keyword in future research. (8) The co-citation analysis concludes three categories of the cited articles, which are diagnosis, therapy, and complications, indicating the past research direction. Conclusion This study highlights the complexity of neurobrucellosis, presenting the need for advanced diagnostic techniques and multifaceted treatment approaches. While antibiotics remain the cornerstone of therapy, the use of corticosteroids to mitigate inflammatory responses shows promise, albeit with concerns about potential sequelae and relapse. Future research should focus on refining therapeutic strategies that address both the direct effects of infection and the broader immunological impacts to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Lanting Yang
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing, China
- Faculty of Arts, The University of Melbourne, Melbourne, VIC, Australia
| | - Wei Pan
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing, China
| | - Qiong Cai
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing, China
| | - Mingyang An
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing, China
| | - Chunjie Wang
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing, China
| | - Xilong Pan
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
2
|
Willis MD, Kreft KL, Dancey B. Oligoclonal bands. Pract Neurol 2024; 24:400-406. [PMID: 38937092 DOI: 10.1136/pn-2023-003814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
Oligoclonal bands (OCBs) represent the presence of intrathecal immunoglobulin G (IgG) as detected by isoelectric focusing and immunofixation. Cerebrospinal fluid (CSF) analysed alongside a paired serum sample gives five different immunofixation patterns. These are: type 1-the normal physiological state with no intrathecal IgG synthesis; type 2-evidence for intrathecal IgG synthesis, with CSF-restricted OCBs; type 3-evidence for intrathecal IgG synthesis, with CSF-restricted OCBs, but with additional, identical bands in the CSF and serum; type 4-absence of intrathecal IgG synthesis, but with identical OCBs in CSF and serum; and type 5-absence of intrathecal IgG synthesis, with a monoclonal band in CSF and serum. Analysis of these patterns can help to diagnose a range of neurological conditions, including multiple sclerosis. However, it is important to interpret OCB results alongside other CSF tests and their clinical context.
Collapse
Affiliation(s)
- Mark D Willis
- Helen Durham Centre for Neuroinflammatory Disease, Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Karim L Kreft
- Helen Durham Centre for Neuroinflammatory Disease, Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Bethan Dancey
- Department of Clinical Immunology & Allergy, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
3
|
Callegari I, Oechtering J, Schneider M, Perriot S, Mathias A, Voortman MM, Cagol A, Lanner U, Diebold M, Holdermann S, Kreiner V, Becher B, Granziera C, Junker A, Du Pasquier R, Khalil M, Kuhle J, Kappos L, Sanderson NSR, Derfuss T. Cell-binding IgM in CSF is distinctive of multiple sclerosis and targets the iron transporter SCARA5. Brain 2024; 147:839-848. [PMID: 38123517 PMCID: PMC10907079 DOI: 10.1093/brain/awad424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 12/23/2023] Open
Abstract
Intrathecal IgM production in multiple sclerosis is associated with a worse disease course. To investigate pathogenic relevance of autoreactive IgM in multiple sclerosis, CSF from two independent cohorts, including multiple sclerosis patients and controls, were screened for antibody binding to induced pluripotent stem cell-derived neurons and astrocytes, and a panel of CNS-related cell lines. IgM binding to a primitive neuro-ectodermal tumour cell line discriminated 10% of multiple sclerosis donors from controls. Transcriptomes of single IgM producing CSF B cells from patients with cell-binding IgM were sequenced and used to produce recombinant monoclonal antibodies for characterization and antigen identification. We produced five cell-binding recombinant IgM antibodies, of which one, cloned from an HLA-DR + plasma-like B cell, mediated antigen-dependent complement activation. Immunoprecipitation and mass spectrometry, and biochemical and transcriptome analysis of the target cells identified the iron transport scavenger protein SCARA5 as the antigen target of this antibody. Intrathecal injection of a SCARA5 antibody led to an increased T cell infiltration in an experimental autoimmune encephalomyelitis (EAE) model. CSF IgM might contribute to CNS inflammation in multiple sclerosis by binding to cell surface antigens like SCARA5 and activating complement, or by facilitating immune cell migration into the brain.
Collapse
Affiliation(s)
- Ilaria Callegari
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| | - Johanna Oechtering
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| | - Mika Schneider
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Sylvain Perriot
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Center of Research in Neurosciences, Lausanne 1011, Switzerland
| | - Amandine Mathias
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Center of Research in Neurosciences, Lausanne 1011, Switzerland
| | | | - Alessandro Cagol
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, Basel 4123, Switzerland
| | - Ulrike Lanner
- Proteomics Core Facility, Biozentrum, University of Basel, Basel 4056, Switzerland
| | - Martin Diebold
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg 79085, Germany
| | - Sebastian Holdermann
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Victor Kreiner
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Cristina Granziera
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, Basel 4123, Switzerland
| | - Andreas Junker
- Department of Neuropathology, University Hospital Essen, Essen 45147, Germany
| | - Renaud Du Pasquier
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Center of Research in Neurosciences, Lausanne 1011, Switzerland
- Department of Clinical Neurosciences, Service of Neurology, Lausanne 1011, Switzerland
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz 8010, Austria
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| | - Nicholas S R Sanderson
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| | - Tobias Derfuss
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel 4056, Switzerland
| |
Collapse
|
4
|
Berek K, Bauer A, Rudzki D, Auer M, Barket R, Zinganell A, Lerch M, Hofer L, Grams A, Poskaite P, Wurth S, Berger T, Di Pauli F, Deisenhammer F, Hegen H, Reindl M. Immune profiling in multiple sclerosis: a single-center study of 65 cytokines, chemokines, and related molecules in cerebrospinal fluid and serum. Front Immunol 2023; 14:1200146. [PMID: 37383229 PMCID: PMC10294231 DOI: 10.3389/fimmu.2023.1200146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction The understanding of the pathophysiology of multiple sclerosis (MS) has evolved alongside the characterization of cytokines and chemokines in cerebrospinal fluid (CSF) and serum. However, the complex interplay of pro- and anti-inflammatory cytokines and chemokines in different body fluids in people with MS (pwMS) and their association with disease progression is still not well understood and needs further investigation. Therefore, the aim of this study was to profile a total of 65 cytokines, chemokines, and related molecules in paired serum and CSF samples of pwMS at disease onset. Methods Multiplex bead-based assays were performed and baseline routine laboratory diagnostics, magnetic resonance imaging (MRI), and clinical characteristics were assessed. Of 44 participants included, 40 had a relapsing-remitting disease course and four a primary progressive MS. Results There were 29 cytokines and chemokines that were significantly higher in CSF and 15 in serum. Statistically significant associations with moderate effect sizes were found for 34 of 65 analytes with sex, age, CSF, and MRI parameters and disease progression. Discussion In conclusion, this study provides data on the distribution of 65 different cytokines, chemokines, and related molecules in CSF and serum in newly diagnosed pwMS.
Collapse
Affiliation(s)
- Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Angelika Bauer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Dagmar Rudzki
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Barket
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Magdalena Lerch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Livia Hofer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Astrid Grams
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Paulina Poskaite
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Wurth
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Reindl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Cabrera CM. Oligoclonal bands: An immunological and clinical approach. Adv Clin Chem 2022; 109:129-163. [DOI: 10.1016/bs.acc.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Bernardi G, Biagioli T, Malpassi P, De Michele T, Vecchio D, Repice AM, Lugaresi A, Mirabella M, Torri Clerici V, Crespi I. The contribute of cerebrospinal fluid free light-chain assay in the diagnosis of multiple sclerosis and other neurological diseases in an Italian multicenter study. Mult Scler 2021; 28:1364-1372. [PMID: 34965771 DOI: 10.1177/13524585211064121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) free light chains (FLCs) can be an alternative assay to oligoclonal bands (OCBs) in inflammatory neurological disorders, but threshold has no consensus. OBJECTIVE To assess the diagnostic accuracy of CSF FLCs in multiple sclerosis (MS) and other neurological diseases. METHODS A total of 406 patients from five Italian centers. FLCs were measured in CSF and serum using Freelite MX assays on Optilite. RESULTS A total of 171 patients were diagnosed as MS, 154 non-inflammatory neurological diseases, 48 inflammatory central nervous system (CNS) diseases, and 33 peripheral neurological diseases. Both kFLC and λFLC indices were significantly higher in patients with MS compared to other groups (p < 0.0001). The kFLC index ⩾ 6.4 is comparable to OCB for MS diagnosis (area under the receiver operating characteristic curve (AUC) = 0.876; sensitivity 83.6% vs 84.2%; specificity 88.5% vs 90.6%). λFLC index ⩾ 5 showed an AUC of 0.616, sensitivity of 33.3% and specificity of 90.6%. In all, 12/27 (44.4%) MS patients with negative OCB had kFLC index ⩾ 6.4. Interestingly, 37.5% of 24 patients with a single CSF IgG band showed high kFLC index and 12.5% positive λFLC index. CONCLUSION Our findings support the diagnostic utility of FLC indices in MS and other CNS inflammatory disorders, suggesting a combined use of FLC and OCB to help clinicians with complementary information.
Collapse
Affiliation(s)
- Gaetano Bernardi
- Laboratory of Clinical Investigation, Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Tiziana Biagioli
- General Laboratory, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Paola Malpassi
- Laboratorio Unico Metropolitano, Azienda Unità Sanitaria Locale Bologna, Bologna, Italy
| | - Teresa De Michele
- Clinical Biochemistry Laboratory, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Domizia Vecchio
- Department of Translational Medicine, Neurology Unit, University of Piemonte Orientale, Novara, Italy/Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
| | - Anna Maria Repice
- SOD Department of Neurology 2, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Alessandra Lugaresi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy/IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Massimiliano Mirabella
- UOS Sclerosi Multipla, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Valentina Torri Clerici
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ilaria Crespi
- Clinical Biochemistry, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
7
|
Abstract
Meningitis and encephalitis are inflammatory syndromes of the meninges and brain parenchyma, respectively, and may be identified either by finding definitive evidence of inflammation on tissue pathology or by cerebrocpinal fluid (CSF) analysis showing pleocytosis or intrathecal antibody synthesis. Clinicians evaluating undifferentiated meningitis or encephalitis should simultaneously consider autoimmune, infectious, and neoplastic causes, using patient risk factors, clinical syndrome, and diagnostic results including CSF and MRI findings to narrow the differential diagnosis. If an autoimmune cause is favored, an important early diagnostic question is whether a specific neural autoantibody is likely to be identified.
Collapse
Affiliation(s)
- Megan B Richie
- Department of Neurology, University of California San Francisco, 505 Parnassus Avenue, Box 0114, San Francisco, CA 94143, USA.
| |
Collapse
|
8
|
Gubanova K, Lang J, Latzko J, Novotna B, Perneczky J, Pingitzer S, Purer P, Wuchty B, Waiß C, Sellner J. Peripheral neuropathy due to neuroborreliosis: Insensitivity for CXCL13 as early diagnostic marker. Int J Infect Dis 2021; 105:460-462. [PMID: 33684563 DOI: 10.1016/j.ijid.2021.02.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
The case of a 69-year-old woman with peripheral neuropathy caused by Lyme neuroborreliosis (LNB) in an endemic region in Eastern Austria is reported. The patient had noticed transient numbness of her left leg. On initial examination, she had patchy sensory disturbances of the left lower leg, but ancillary examinations of nerve conduction and cerebrospinal fluid (CSF), including the B-cell chemokine CXCL13, were normal. A re-tap performed 54 days later, following clinical progression with foot drop, widespread lower leg paresthesia, and pain, revealed an increased cell count, autochthonous IgM production, synthesis of Borrelia-specific IgM, and elevated CXCL13. Neurophysiological examinations disclosed an incomplete conduction block, mixed axonal and demyelinating sensorimotor neuropathy, and subacute neurogenic damage of muscles innervated by the peroneal nerve. This case study presents rare evidence of very early diagnostic findings in peripheral neuropathy caused by LNB. These are characterized by insensitivity of CXCL13 in CSF to aid earlier diagnosis and the development of an intrathecal immune response against Borrelia at a later stage. These findings reinforce the need for a re-tap to confirm the diagnosis and facilitate appropriate treatment in this rare manifestation of LNB.
Collapse
Affiliation(s)
- Kristina Gubanova
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
| | - Julia Lang
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
| | - Juliane Latzko
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
| | - Bianka Novotna
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
| | - Julian Perneczky
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
| | - Stefan Pingitzer
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
| | - Petra Purer
- Institute for Hygiene and Microbiology, University Hospital of St Pölten, Karl Landsteiner University of Health Sciences, St Pölten, Austria
| | - Bianca Wuchty
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
| | - Christoph Waiß
- Department of Neurology, University Hospital of St Pölten, Karl Landsteiner University of Health Sciences, St Pölten, Austria
| | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria; Department of Neurology, Klinikum Rechts der Isar, Technische Universität München, München, Germany; Department of Neurology, Christian Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|