1
|
Xu Q, Wu M, Zhang L, Chen X, Zhou M, Jiang B, Jia Y, Yong X, Tang S, Mou L, Jia Z, Shabala S, Pan Y. Unraveling Key Factors for Hypoxia Tolerance in Contrasting Varieties of Cotton Rose by Comparative Morpho-physiological and Transcriptome Analysis. PHYSIOLOGIA PLANTARUM 2024; 176:e14317. [PMID: 38686568 DOI: 10.1111/ppl.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
The cotton rose (Hibiscus mutabilis) is a plant species commonly found in tropical and subtropical regions. It is remarkably resilient to waterlogging stress; however, the underlying mechanism behind this trait is yet unknown. This study used hypoxia-tolerant "Danbanhong" (DBH) and more hypoxia-sensitive "Yurui" (YR) genotypes and compared their morpho-physiological and transcriptional responses to hypoxic conditions. Notably, DBH had a higher number of adventitious roots (20.3) compared to YR (10.0), with longer adventitious roots in DBH (18.3 cm) than in YR (11.2 cm). Furthermore, the formation of aerenchyma was 3-fold greater in DBH compared to YR. Transcriptomic analysis revealed that DBH had more rapid transcriptional responses to hypoxia than YR. Identification of a greater number of differentially expressed genes (DEGs) for aerenchyma, adventitious root formation and development, and energy metabolism in DBH supported that DBH had better morphological and transcriptional adaptation than YR. DEG functional enrichment analysis indicated the involvement of variety-specific biological processes in adaption to hypoxia. Plant hormone signaling transduction, MAPK signaling pathway and carbon metabolism played more pronounced roles in DBH, whereas the ribosome genes were specifically induced in YR. These results show that effective multilevel coordination of adventitious root development and aerenchyma, in conjunction with plant hormone signaling and carbon metabolism, is required for increased hypoxia tolerance. This study provides new insights into the characterization of morpho-physiological and transcriptional responses to hypoxia in H. mutabilis, shedding light on the molecular mechanisms of its adaptation to hypoxic environments.
Collapse
Affiliation(s)
- Qian Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lu Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xi Chen
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Mei Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xue Yong
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | | | - Lisha Mou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zhishi Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Sergey Shabala
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Yuanzhi Pan
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Begum K, Das A, Ahmed R, Akhtar S, Kulkarni R, Banu S. Genome-wide analysis of respiratory burst oxidase homolog ( Rboh) genes in Aquilaria species and insight into ROS-mediated metabolites biosynthesis and resin deposition. FRONTIERS IN PLANT SCIENCE 2024; 14:1326080. [PMID: 38405033 PMCID: PMC10893762 DOI: 10.3389/fpls.2023.1326080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/18/2023] [Indexed: 02/27/2024]
Abstract
Respiratory burst oxidase homolog (Rboh) generates reactive oxygen species (ROS) as a defense response during biotic and abiotic stress. In Aquilaria plants, wounding and fungal infection result in biosynthesis and deposition of secondary metabolites as defense responses, which later form constituents of fragrant resinous agarwood. During injury and fungal invasion, Aquilaria tree generates ROS species via the Rboh enzymes. Despite the implication of Rboh genes in agarwood formation, no comprehensive genomic-level study of the Rboh gene family in Aquilaria is present. A systematic illustration of their role during stress and involvement in initiating signal cascades for agarwood metabolite biosynthesis is missing. In this study, 14 Rboh genes were retrieved from genomes of two Aquilaria species, A. agallocha and A. sinensis, and were classified into five groups. The promoter regions of the genes had abundant of stress-responsive elements. Protein-protein network and in silico expression analysis suggested their functional association with MAPK proteins and transcription factors such as WRKY and MYC2. The study further explored the expression profiles of Rboh genes and found them to be differentially regulated in stress-induced callus and stem tissue, suggesting their involvement in ROS generation during stress in Aquilaria. Overall, the study provides in-depth insight into two Rboh genes, AaRbohC and AaRbohA, highlighting their role in defense against fungal and abiotic stress, and likely during initiation of agarwood formation through modulation of genes involved in secondary metabolites biosynthesis. The findings presented here offer valuable information about Rboh family members, which can be leveraged for further investigations into ROS-mediated regulation of agarwood formation in Aquilaria species.
Collapse
Affiliation(s)
- Khaleda Begum
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Ankur Das
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Raja Ahmed
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Suraiya Akhtar
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sofia Banu
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
3
|
Zhang H, Liu X, Tang C, Lv S, Zhang S, Wu J, Wang P. PbRbohH/J mediates ROS generation to regulate the growth of pollen tube in pear. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108342. [PMID: 38219427 DOI: 10.1016/j.plaphy.2024.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Respiratory burst oxidase homolog (Rboh) family genes play crucial functions in development and growth. However, comprehensive and systematic investigation of Rboh family members in Rosaceae and their specific functions during pear pollen development are still limited. In the study, 63 Rboh genes were identified from eight Rosaceae genomes (Malus domestica, Pyrus bretschneideri, Pyrus communis, Prunus persica, Rubus occidentalis, Fragaria vesca, Prunus mume and Prunus avium) and divided into seven main subfamilies (I-VII) according to phylogenetic and structural features. Different modes of gene duplication led to the expansion of Rboh family, with purifying selection playing a vital role in the evolution of Rboh genes. In addition, RNA sequencing and qRT-PCR results indicated that PbRbohH and PbRbohJ were specifically high-expressed in pear pollen. Subsequently, subcellular localization revealed that PbRbohH/J distributed at the plasma membrane. Furthermore, by pharmacological analysis and antisense oligodeoxynucleotide assay, PbRbohH/J were demonstrated to mediate the formation of reactive oxygen species (ROS) to manage pollen tube growth. In conclusion, our results provide useful insights into the functions, expression patterns, evolutionary history of the Rboh genes in pear and other Rosaceae species.
Collapse
Affiliation(s)
- Hao Zhang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xueying Liu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chao Tang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shouzheng Lv
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Peng Wang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
4
|
Wu F, Zhao M, Zhang Y, Si W, Cheng B, Li X. Systematic analysis of the Rboh gene family in seven gramineous plants and its roles in response to arbuscular mycorrhizal fungi in maize. BMC PLANT BIOLOGY 2023; 23:603. [PMID: 38030972 PMCID: PMC10688149 DOI: 10.1186/s12870-023-04571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/29/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Plant respiratory burst oxidase homolog (Rboh) gene family produces reactive oxygen species (ROS), and it plays key roles in plant-microbe interaction. Most Rboh gene family-related studies mainly focused on dicotyledonous plants; however, little is known about the roles of Rboh genes in gramineae. RESULTS A total of 106 Rboh genes were identified in seven gramineae species, including Zea mays, Sorghum bicolor, Brachypodium distachyon, Oryza sativa, Setaria italica, Hordeum vulgare, and Triticum aestivum. The Rboh protein sequences showed high similarities, suggesting that they may have conserved functions across different species. Duplication mode analysis detected whole-genome/segmental duplication (WGD)/(SD) and dispersed in the seven species. Interestingly, two local duplication (LD, including tandem and proximal duplication) modes were found in Z. mays, S. italica and H. vulgare, while four LD were detected in T. aestivum, indicating that these genes may have similar functions. Collinearity analysis indicated that Rboh genes are at a stable evolution state in all the seven species. Besides, Rboh genes from Z. mays were closely related to those from S. bicolor, consistent with the current understanding of plant evolutionary history. Phylogenetic analysis showed that the genes in the subgroups I and II may participate in plant-AM fungus symbiosis. Cis-element analysis showed that different numbers of elements are related to fungal induction in the promoter region. Expression profiles of Rboh genes in Z. mays suggested that Rboh genes had distinct spatial expression patterns. By inoculation with AM fungi, our transcriptome analysis showed that the expression of Rboh genes varies upon AM fungal inoculation. In particularly, ZmRbohF was significantly upregulated after inoculation with AM fungi. pZmRbohF::GUS expression analyses indicated that ZmRbohF was induced by arbuscular mycorrhizal fungi in maize. By comparing WT and ZmRbohF mutant, we found ZmRbohF had limited impact on the establishment of maize-AM fungi symbiosis, but play critical roles in regulating the proper development of arbuscules. CONCLUSIONS This study provides a comprehensive analysis of the evolution relationship of Rboh genes in seven gramineae species. Results showed that several Rboh genes regulate maize-AM fungal symbiosis process. This study provides valuable information for further studies of Rboh genes in gramineae.
Collapse
Affiliation(s)
- Fulang Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
- College of Life Science, Anhui Agricultural University of China, Changjiang West Road, Hefei, 230036, China
| | - Manli Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
- College of Life Science, Anhui Agricultural University of China, Changjiang West Road, Hefei, 230036, China
| | - Yajing Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
- College of Life Science, Anhui Agricultural University of China, Changjiang West Road, Hefei, 230036, China
| | - Weina Si
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
- College of Life Science, Anhui Agricultural University of China, Changjiang West Road, Hefei, 230036, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China.
- College of Life Science, Anhui Agricultural University of China, Changjiang West Road, Hefei, 230036, China.
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China.
- College of Life Science, Anhui Agricultural University of China, Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
5
|
Yan J, Song Y, Li M, Hu T, Hsu YF, Zheng M. IRR1 contributes to de novo root regeneration from Arabidopsis thaliana leaf explants. PHYSIOLOGIA PLANTARUM 2023; 175:e14047. [PMID: 37882290 DOI: 10.1111/ppl.14047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Plants are capable of regenerating adventitious roots (ARs), which is important for plant response to stress and survival. Although great advances in understanding AR formation of leaf explants have been made, the regulatory mechanisms of AR formation still need to be investigated. In this study, irr1-1 (impaired root regeneration) was isolated with the inhibition of adventitious rooting from Arabidopsis leaf explants. The β-glucuronidase (GUS) signals of IRR1pro::GUS in detached leaves could be detected at 2-6 days after culture. IRR1 is annotated to encode a Class III peroxidase localized in the cell wall. The total peroxidase (POD) activity of irr1 mutants was significantly lower than that of the wild type. Detached leaves of irr1 mutants showed enhanced reactive oxygen species (ROS) accumulation 4 days after leaves were excised from seedlings. Moreover, thiourea, a ROS scavenger, was able to rescue the adventitious rooting rate in leaf explants of irr1 mutants. Addition of 0.1 μM indole-3-acetic acid (IAA) improved the adventitious rooting from leaf explants of irr1 mutants. Taken together, these results indicated that IRR1 was involved in AR formation of leaf explants, which was associated with ROS homeostasis to some extent.
Collapse
Affiliation(s)
- Jiawen Yan
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yu Song
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Meng Li
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ting Hu
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yi-Feng Hsu
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Min Zheng
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Wen Z, Chen Z, Liu X, Sun J, Zhang F, Zhang M, Dong C. 24-Epibrassinolide Facilitates Adventitious Root Formation by Coordinating Cell-Wall Polyamine Oxidase- and Plasma Membrane Respiratory Burst Oxidase Homologue-Derived Reactive Oxygen Species in Capsicum annuum L. Antioxidants (Basel) 2023; 12:1451. [PMID: 37507989 PMCID: PMC10376213 DOI: 10.3390/antiox12071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Adventitious root (AR) formation is a critical process in cutting propagation of horticultural plants. Brassinosteroids (BRs) have been shown to regulate AR formation in several plant species; however, little is known about their exact effects on pepper AR formation, and the downstream signaling of BRs also remains elusive. In this study, we showed that treatment of 24-Epibrassinolide (EBL, an active BR) at the concentrations of 20-100 nM promoted AR formation in pepper (Capsicum annuum). Furthermore, we investigated the roles of apoplastic reactive oxygen species (ROS), including hydrogen peroxide (H2O2) and superoxide radical (O2•-), in EBL-promoted AR formation, by using physiological, histochemical, bioinformatic, and biochemical approaches. EBL promoted AR formation by modulating cell-wall-located polyamine oxidase (PAO)-dependent H2O2 production and respiratory burst oxidase homologue (RBOH)-dependent O2•- production, respectively. Screening of CaPAO and CaRBOH gene families combined with gene expression analysis suggested that EBL-promoted AR formation correlated with the upregulation of CaPAO1, CaRBOH2, CaRBOH5, and CaRBOH6 in the AR zone. Transient expression analysis confirmed that CaPAO1 was able to produce H2O2, and CaRBOH2, CaRBOH5, and CaRBOH6 were capable of producing O2•-. The silencing of CaPAO1, CaRBOH2, CaRBOH5, and CaRBOH6 in pepper decreased the ROS accumulation and abolished the EBL-induced AR formation. Overall, these results uncover one of the regulatory pathways for BR-regulated AR formation, and extend our knowledge of the functions of BRs and of the BRs-ROS crosstalk in plant development.
Collapse
Affiliation(s)
- Zhengyang Wen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhifeng Chen
- College of Biology and Agricultural Technology, Zunyi Normal College, Zunyi 563006, China
| | - Xinyan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingbo Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengxia Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunjuan Dong
- College of Biology and Agricultural Technology, Zunyi Normal College, Zunyi 563006, China
| |
Collapse
|
7
|
Wang Z, Li Z, Wu D, Tian Q, Su S, Cheng C, Nie J, Yuan Y, Wang Y, Xu X. DNA methylation variation is crucial to restore adventitious rooting ability during in vitro shoot culture-induced rejuvenation in apple rootstock. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:554-569. [PMID: 36799443 DOI: 10.1111/tpj.16153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 05/10/2023]
Abstract
In vitro shoot culture has been widely used for restoring adventitious rooting ability in rooting recalcitrant woody perennial species for the past few decades, but its molecular mechanism is largely uncovered. DNA methylation is an essential epigenetic mark that participates in many biological processes. Recent reports suggested a role of DNA methylation in vitro culture in plants. In this study, we characterized the single-base resolution DNA methylome and transcriptome of adult and in vitro shoot culture-induced rejuvenation cuttings of apple rootstock M9T337. We found a global decrease in DNA methylation during rejuvenation, which may be correlated with increased expression of DNA demethylase genes and decreased expression of DNA methyltransferase genes. We additionally documented DNA hypomethylation in 'T337'_R in gene protomer associated with higher transcript levels of several adventitious rooting-related genes. The application of a DNA methylation inhibitor (5-azacytidine) enhanced the adventitious rooting ability and the expression level of adventitious rooting-related genes, such as, MdANT, MdMPK3, MdABCB21, MdCDC48, MdKIN8B, pri-MdMIR156a5 and pri-MdMIR156a12. Together, the DNA hypomethylation is critical for the rejuvenation-dependent adventitious rooting ability in apple rootstock. In addition, increased DNA methylation was also found in thousands of genes in 'T337'_R. We additionally documented that DNA hypermethylation is required for inhibition of adventitious rooting-repressed genes, such as MdGAD5a, encoding glutamate decarboxylase, which can catalyze glutamate decarboxylated to form γ-aminobutyric acid (GABA). Our results revealed that in vitro shoot culture-dependent DNA methylation variation plays important roles in adventitious rooting in apple rootstock.
Collapse
Affiliation(s)
- Zhe Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhengnan Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Dongchen Wu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiuye Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shenghui Su
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chenxia Cheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiyun Nie
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yongbing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yongzhang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaozhao Xu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
8
|
Tian Q, Xu M, Wu D, Wang C, Wang X, Che Q, Li Z, Xu X. Integrated transgene and transcriptome reveal the molecular basis of MdWRKY87 positively regulate adventitious rooting in apple rootstock. FRONTIERS IN PLANT SCIENCE 2023; 14:1136616. [PMID: 36778677 PMCID: PMC9909196 DOI: 10.3389/fpls.2023.1136616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
For most fruit and forest species vegetative propagated from elite genotypes, adventitious rooting is essential. The ability to form adventitious roots significantly decreased during the juvenile to adult phase change. Apart from the miR156-SPL pathway, whether there is another regulation mechanism controlling age-dependent adventitious rooting ability remained largely unknown. In the present study, we showed that MdWRKY87 expression level was positively correlation with adventitious rooting ability. In addition, over-expressing of MdWRKY87 in tobacco leads to enhanced adventitious rooting ability, more adventitious root number and accelerated adventitious rooting process. Comparative transcriptome profiling indicated that MdWRKY87 overexpression can activate the expression of adventitious rooting-induced genes, such as WOX11 and AIL. In addition, MdWRKY87 overexpression can inhibit the transcription of adventitious rooting-repressed genes, such as AUX/IAAs and type-B cytokinin RRs. Collectively, here we demonstrated that higher expression level of MdWRKY87 contributes to age-dependent adventitious rooting-competent in juvenile apple rootstock.
Collapse
Affiliation(s)
- Qiuye Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Mengli Xu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China
| | - Dongchen Wu
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, China
| | - Chaoping Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xianlin Wang
- Weihai Yingjuval Nursery Limited Company, Weihai International Port Economic and Technological Develepment District, Weihai, Shandong, China
| | - Qinqin Che
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Zhengnan Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaozhao Xu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
9
|
Genome Wide Identification of Respiratory Burst Oxidase Homolog ( Rboh) Genes in Citrus sinensis and Functional Analysis of CsRbohD in Cold Tolerance. Int J Mol Sci 2022; 23:ijms23020648. [PMID: 35054832 PMCID: PMC8776138 DOI: 10.3390/ijms23020648] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 01/05/2023] Open
Abstract
Respiratory burst oxidase homologs (Rbohs) are critical enzymes involved in the generation of reactive oxygen species (ROS) that play an important role in plant growth and development as well as various biotic and abiotic stresses in plants. Thus far, there have been few reports on the characterization of the Rboh gene family in Citrus. In this study, seven Rboh genes (CsRbohA~CsRbohG) were identified in the Citrus sinensis genome. The CsRboh proteins were predicted to localize to the cell membrane. Most CsRbohs contained four conserved domains, an EF-hand domain, and a transmembrane region. Phylogenetic analysis demonstrated that the CsRbohs were divided into five groups, suggesting potential distinct functions and evolution. The expression profiles revealed that these seven CsRboh genes displayed tissue-specific expression patterns, and five CsRboh genes were responsive to cold stress. Fourteen putative cis-acting elements related to stress response, hormone response, and development regulation were present within the promoters of CsRboh genes. The in-silico microRNA target transcript analyses indicated that CsRbohE might be targeted by csi-miR164. Further functional and physiological analyses showed that the knockdown of CsRbohD in trifoliate orange impaired resistance to cold stress. As a whole, our results provide valuable information for further functional studies of the CsRboh genes in response to cold stress.
Collapse
|