1
|
Mallick A, Sarkar S, Lopes BS, Das S. Drug-resistant Pantoea agglomerans Causing Bacteremia at a Tertiary Care Hospital in Kolkata, India: First Report of Carbapenem Resistance Mediated by OXA-181. Curr Microbiol 2024; 81:389. [PMID: 39367887 DOI: 10.1007/s00284-024-03888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024]
Abstract
The spread of antibiotic resistance (ABR) in uncommon human pathogens endangers global public health, escalating morbidity, death, and healthcare expenditures. Pantoea agglomerans, a member of the Erwiniaceae family that rarely infects humans, is emerging as a drug-resistant nosocomial pathogen. Seven P. agglomerans isolates were recovered from bacteremia patients at a tertiary care hospital in Kolkata, West Bengal, between March 2022 and October 2022. The isolates were evaluated for phenotypic resistance, β-lactamase and plasmid-mediated quinolone resistance (PMQR) genes, plasmid profiling, and clonality assessment. All isolates were resistant to fluoroquinolones and third-generation cephalosporins, with four resistant to carbapenems. The following β-lactamases and PMQR genes were identified: blaOXA-1 (n = 1), blaTEM (n = 1), blaCTX-M-1 (n = 2), blaNDM (n = 5), blaOXA-181 (n = 1), qnrB (n = 2), and qnrS (n = 4). Six isolates carried up to seven plasmids ranging in size from 2 kb to > 212 kb. IncFI, FII, HI, and X3 plasmid types were detected in three isolates, while the rest remained untypable. Four different genetic patterns were noted. Four isolates were clonally related, with three being clonal. The swap of environmental isolates to human pathogens exacerbates the ABR dilemma, periling patient care and outcomes. This is the first report in India of a carbapenem-resistant P. agglomerans blood isolate carrying blaOXA-181. In-depth genomic research of drug-resistant microbes adapted to the environment-human interfaces might underpin the source-route-containment of ABR.
Collapse
Affiliation(s)
- Abhi Mallick
- Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, India
| | - Soma Sarkar
- Microbiology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, India
| | - Bruno Silvester Lopes
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK.
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| | - Surojit Das
- Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, India.
| |
Collapse
|
2
|
Li Y, Fu S, Klein MS, Wang H. High Prevalence of Antibiotic Resistance in Traditionally Fermented Foods as a Critical Risk Factor for Host Gut Antibiotic Resistome. Microorganisms 2024; 12:1433. [PMID: 39065201 PMCID: PMC11279133 DOI: 10.3390/microorganisms12071433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to assess the suitability of fermented food interventions to replenish damaged gut microbiota. Metagenomic assessment of published sequencing data found that fermented food interventions led to a significant increase in the gut antibiotic resistome in healthy human subjects. Antibiotic resistome and viable antibiotic-resistant (AR) bacteria were further highly prevalent in retail kimchi and artisan cheeses by metagenomic and culture analyses. Representative AR pathogens of importance in nosocomial infections, such as Klebsiella pneumoniae, Serratia marcescens, and vancomycin-resistant Enterococcus (VRE), as well as commensals and lactic acid bacteria, were characterized; some exhibited an extremely high minimum inhibitory concentration (MIC) against antibiotics of clinical significance. Exposing fermented food microbiota to representative antibiotics further led to a boost of the corresponding antibiotic and multidrug-resistance gene pools, as well as disturbed microbiota, including the rise of previously undetectable pathogens. These results revealed an underestimated public health risk associated with fermented food intervention at the current stage, particularly for susceptible populations with compromised gut integrity and immune functions seeking gut microbiota rescue. The findings call for productive intervention of foodborne AR via technology innovation and strategic movements to mitigate unnecessary, massive damages to the host gut microbiota due to orally administered or biliary excreted antibiotics.
Collapse
Affiliation(s)
| | | | | | - Hua Wang
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA (M.S.K.)
| |
Collapse
|
3
|
Dahiya P, Kumar P, Rani S, Dang AS, Suneja P. Comparative Genomic and Functional Analyses for Insights into Pantoea agglomerans Strains Adaptability in Diverse Ecological Niches. Curr Microbiol 2024; 81:254. [PMID: 38955887 DOI: 10.1007/s00284-024-03763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/31/2024] [Indexed: 07/04/2024]
Abstract
Pantoea agglomerans inhabit diverse ecological niches, ranging from epiphytes and endophytes in plants, body of animals, and occasionally in the human system. This multifaceted bacterium contributes substantially to plant growth promotion, stress resilience, and biocontrol but can also act as a pathogen to its host. The genetic determinants underlying these diverse functions remain largely unfathomed and to uncover this phenomenon, nineteen strains of Pantoea agglomerans were selected and analyzed. Genome-to-Genome Distance Calculator (GGDC) which uses the Genome Blast Distance Phylogeny (GBDP) technique to calculate digital DDH values. Phylogenetic analysis via Genome-to-Genome distance, Average Nucleotide Identity, and Amino Acid Identity calculation revealed that all strains belonged to the genus Pantoea. However, strain 33.1 had a lower value than the threshold for the same species delineation. Bacterial Pan Genome Analysis (BPGA) Pipeline and MinPath analysis revealed genetic traits associated with environmental resilience, such as oxidative stress, UV radiation, temperature extremes, and metabolism of distinct host-specific carbohydrates. Protein-protein interactome analysis illustrated osmotic stress proteins closely linked with core proteins, while heavy metal tolerance, nitrogen metabolism, and Type III and VI secretion systems proteins generally associated with pathogenicity formed a separate network, indicating strain-specific characteristics. These findings shed new light on the intricate genetic architecture of Pantoea agglomerans, revealing its adaptability to inhabit diverse niches and thrive in varied environments.
Collapse
Affiliation(s)
- Priyanka Dahiya
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Lab no. 312, Rohtak, Haryana, 124001, India
| | - Pradeep Kumar
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Lab no. 312, Rohtak, Haryana, 124001, India
| | - Simran Rani
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Lab no. 312, Rohtak, Haryana, 124001, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pooja Suneja
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Lab no. 312, Rohtak, Haryana, 124001, India.
| |
Collapse
|
4
|
Patakova P, Vasylkivska M, Sedlar K, Jureckova K, Bezdicek M, Lovecka P, Branska B, Kastanek P, Krofta K. Whole genome sequencing and characterization of Pantoea agglomerans DBM 3797, endophyte, isolated from fresh hop ( Humulus lupulus L.). Front Microbiol 2024; 15:1305338. [PMID: 38389535 PMCID: PMC10882544 DOI: 10.3389/fmicb.2024.1305338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Background This paper brings new information about the genome and phenotypic characteristics of Pantoea agglomerans strain DBM 3797, isolated from fresh Czech hop (Humulus lupulus) in the Saaz hop-growing region. Although P. agglomerans strains are frequently isolated from different materials, there are not usually thoroughly characterized even if they have versatile metabolism and those isolated from plants may have a considerable potential for application in agriculture as a support culture for plant growth. Methods P. agglomerans DBM 3797 was cultured under aerobic and anaerobic conditions, its metabolites were analyzed by HPLC and it was tested for plant growth promotion abilities, such as phosphate solubilization, siderophore and indol-3-acetic acid productions. In addition, genomic DNA was extracted, sequenced and de novo assembly was performed. Further, genome annotation, pan-genome analysis and selected genome analyses, such as CRISPR arrays detection, antibiotic resistance and secondary metabolite genes identification were carried out. Results and discussion The typical appearance characteristics of the strain include the formation of symplasmata in submerged liquid culture and the formation of pale yellow colonies on agar. The genetic information of the strain (in total 4.8 Mb) is divided between a chromosome and two plasmids. The strain lacks any CRISPR-Cas system but is equipped with four restriction-modification systems. The phenotypic analysis focused on growth under both aerobic and anaerobic conditions, as well as traits associated with plant growth promotion. At both levels (genomic and phenotypic), the production of siderophores, indoleacetic acid-derived growth promoters, gluconic acid, and enzyme activities related to the degradation of complex organic compounds were found. Extracellular gluconic acid production under aerobic conditions (up to 8 g/l) is probably the result of glucose oxidation by the membrane-bound pyrroloquinoline quinone-dependent enzyme glucose dehydrogenase. The strain has a number of properties potentially beneficial to the hop plant and its closest relatives include the strains also isolated from the aerial parts of plants, yet its safety profile needs to be addressed in follow-up research.
Collapse
Affiliation(s)
- Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
- Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katerina Jureckova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Matej Bezdicek
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Department of Internal Medicine-Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Lovecka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia
| | | | - Karel Krofta
- Hop Research Institute, Co. Ltd., Zatec, Czechia
| |
Collapse
|
5
|
Ghaly M, Zakala A, Penmethsa K, Johnson-Pich KD. A Rare Organism Causing Cholecystitis With Bacteremia in a Breast Cancer Patient. Cureus 2024; 16:e54549. [PMID: 38516448 PMCID: PMC10955448 DOI: 10.7759/cureus.54549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
Pantoea, a gram-negative, rod-shaped, anaerobic bacterium, is a rare cause of human disease. Pantoea species have been known to mostly cause pulmonary disease in agricultural workers as they are native to select crops and wild animal furs. However, in very few documented cases, Pantoea has been discovered as the source of nosocomial infections, usually in the setting of an immunocompromised host. This case report details the clinical course of a 62-year-old immunocompromised female with stage 3 breast cancer presenting with acute cholecystitis and bacteremia and the unexpected discovery of Pantoea in peripheral and chemotherapy port blood cultures. After appropriate management and susceptibility testing, the patient fortunately recovered with initial cefepime and eventual levofloxacin to target the Pantoea species. To our knowledge, this is the third documented case worldwide of Pantoea isolated from cholecystitis with associated bacteremia and the first documented case in North America. Of special interest, a few months after her infection, the patient was found to be free of breast cancer. Pantoea species are known to contain levan, an exopolysaccharide, that has been seen to upregulate tumor suppressor genes. This should be considered in the future management and research of Pantoea infections.
Collapse
Affiliation(s)
- Mina Ghaly
- Internal Medicine, Southeast Health Medical Center, Dothan, USA
| | - Alyssa Zakala
- Research, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Kavya Penmethsa
- Research, Alabama College of Osteopathic Medicine, Dothan, USA
| | | |
Collapse
|
6
|
Delik E, Eroğlu B, Tefon-Öztürk BE. Evaluation of the in vitro effects of concentrations of antibiotics on three Enterobacteriaceae isolates. World J Microbiol Biotechnol 2024; 40:73. [PMID: 38240926 PMCID: PMC10799096 DOI: 10.1007/s11274-023-03877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/17/2023] [Indexed: 01/22/2024]
Abstract
Due to the misuse and overuse of antibiotics, bacteria are now exposed to sub-minimum inhibitory concentrations (sub-MICs) of antibiotics in various environments. In recent years, exposure of bacteria to sub-MICs of antibiotics has led to the widespread emergence of antibiotic-resistant bacteria. In this study, three bacterial species from the Enterobacteriaceae family (Raoultella ornithinolytica, Pantoea agglomerans and Klebsiella quasivariicola) were isolated from water. The antibiotic susceptibility of these bacteria to 16 antibiotics was then investigated. The effects of sub-MICs of four selected antibiotics (kanamycin, chloramphenicol, meropenem, and ciprofloxacin) on the growth, biofilm formation, surface polysaccharide production, siderophore production, morphology, and expression of the translational/transcriptional regulatory transformer gene rfaH of these bacteria were analysed. The MICs of kanamycin, chloramphenicol, meropenem, and ciprofloxacin were determined to be 1, 2, 0.03 and 0.03 µg/mL for R. ornithinolytica; 0.6, 6, 0.03 and 0.05 µg/mL for P. agglomerans; and 2, 5, 0.04 and 0.2 µg/mL for K. quasivariicola. The growth kinetics and biofilm formation ability decreased for all three isolates at sub-MICs. The surface polysaccharides of R. ornithinolytica and P. agglomerans increased at sub-MICs. There was no significant change in the siderophore activities of the bacterial isolates, with the exception of MIC/2 meropenem in R. ornithinolytica and MIC/2 kanamycin in K. quasivariicola. It was observed that the sub-MICs of meropenem and ciprofloxacin caused significant changes in bacterial morphology. In addition, the expression of rfaH in R. ornithinolytica and K. quasivariicola increased with the sub-MICs of the selected antibiotics.
Collapse
Affiliation(s)
- Eda Delik
- Biology Department, Faculty of Science, Akdeniz University, 07070, Antalya, Turkey
| | - Berfin Eroğlu
- Biology Department, Faculty of Science, Akdeniz University, 07070, Antalya, Turkey
| | | |
Collapse
|
7
|
Vitt JD, Hansen EG, Garg R, Bowden SD. Bacteria intrinsic to Medicago sativa (alfalfa) reduce Salmonella enterica growth in planta. J Appl Microbiol 2023; 134:lxad204. [PMID: 37669894 DOI: 10.1093/jambio/lxad204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
AIMS The purpose of this study was to determine whether plant-associated bacteria (PAB) can reduce Salmonella enterica colonization and infection of alfalfa sprouts to reduce the risk of foodborne illness. METHODS We isolated PAB from alfalfa seeds and sprouts. Monoclonal isolates of the bacteria were obtained and tested for their ability to inhibit Salmonella Typhimurium growth in alfalfa sprouts over 6 days. Genome sequencing and annotation were used to construct draft genomes of the bacteria isolated in this study using Illumina sequencing platform. RESULTS We observed that a cocktail of five PAB could reduce Salmonella growth in alfalfa sprouts from ∼108 to ∼105 CFU g-1, demonstrating a protective role. Genome sequencing revealed that these bacteria were members of the Pseudomonas, Pantoea, and Priestia genus, and did not possess genes that were pathogenic to plants or animals. CONCLUSIONS This work demonstrates that PAB can be utilized to reduce pathogen levels in fresh produce, which may be synergistic with other technologies to improve the safety of sprouts and other fresh produce.
Collapse
Affiliation(s)
- Jacob D Vitt
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, MN 55108, United States
| | - Eleanore G Hansen
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, MN 55108, United States
| | - Raghav Garg
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, MN 55108, United States
| | - Steven D Bowden
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, MN 55108, United States
| |
Collapse
|
8
|
Sulja A, Pothier JF, Blom J, Moretti C, Buonaurio R, Rezzonico F, Smits THM. Comparative genomics to examine the endophytic potential of Pantoea agglomerans DAPP-PG 734. BMC Genomics 2022; 23:742. [DOI: 10.1186/s12864-022-08966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractPantoea agglomerans DAPP-PG 734 was isolated as endophyte from knots (tumors) caused by Pseudomonas savastanoi pv. savastanoi DAPP-PG 722 in olive trees. To understand the plant pathogen-endophyte interaction on a genomic level, the whole genome of P. agglomerans DAPP-PG 734 was sequenced and annotated. The complete genome had a total size of 5′396′424 bp, containing one circular chromosome and four large circular plasmids. The aim of this study was to identify genomic features that could play a potential role in the interaction between P. agglomerans DAPP-PG 734 and P. savastanoi pv. savastanoi DAPP-PG 722. For this purpose, a comparative genomic analysis between the genome of P. agglomerans DAPP-PG 734 and those of related Pantoea spp. was carried out. In P. agglomerans DAPP-PG 734, gene clusters for the synthesis of the Hrp-1 type III secretion system (T3SS), type VI secretion systems (T6SS) and autoinducer, which could play an important role in a plant-pathogenic community enhancing knot formation in olive trees, were identified. Additional gene clusters for the biosynthesis of two different antibiotics, namely dapdiamide E and antibiotic B025670, which were found in regions between integrative conjugative elements (ICE), were observed. The in-depth analysis of the whole genome suggested a characterization of the P. agglomerans DAPP-PG 734 isolate as endophytic bacterium with biocontrol activity rather than as a plant pathogen.
Collapse
|
9
|
Evidence of virulence and antibiotic resistance genes from the microbiome mapping in minimally processed vegetables producing facilities. Food Res Int 2022; 162:112202. [DOI: 10.1016/j.foodres.2022.112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
10
|
Lorenzi AS, Bonatelli ML, Chia MA, Peressim L, Quecine MC. Opposite Sides of Pantoea agglomerans and Its Associated Commercial Outlook. Microorganisms 2022; 10:microorganisms10102072. [PMID: 36296348 PMCID: PMC9610544 DOI: 10.3390/microorganisms10102072] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 12/01/2022] Open
Abstract
Multifaceted microorganisms such as the bacterium Pantoea colonize a wide range of habitats and can exhibit both beneficial and harmful behaviors, which provide new insights into microbial ecology. In the agricultural context, several strains of Pantoea spp. can promote plant growth through direct or indirect mechanisms. Members of this genus contribute to plant growth mainly by increasing the supply of nitrogen, solubilizing ammonia and inorganic phosphate, and producing phytohormones (e.g., auxins). Several other studies have shown the potential of strains of Pantoea spp. to induce systemic resistance and protection against pests and pathogenic microorganisms in cultivated plants. Strains of the species Pantoea agglomerans deserve attention as a pest and phytopathogen control agent. Several of them also possess a biotechnological potential for therapeutic purposes (e.g., immunomodulators) and are implicated in human infections. Thus, the differentiation between the harmful and beneficial strains of P. agglomerans is mandatory to apply this bacterium safely as a biofertilizer or biocontroller. This review specifically evaluates the potential of the strain-associated features of P. agglomerans for bioprospecting and agricultural applications through its biological versatility as well as clarifying its potential animal and human health risks from a genomic point of view.
Collapse
Affiliation(s)
- Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - Maria Letícia Bonatelli
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH—UFZ, 04318 Leipzig, Germany
| | - Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Leonardo Peressim
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, USP, Piracicaba 13418-900, SP, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, USP, Piracicaba 13418-900, SP, Brazil
- Correspondence:
| |
Collapse
|
11
|
Lv L, Luo J, Ahmed T, Zaki HEM, Tian Y, Shahid MS, Chen J, Li B. Beneficial Effect and Potential Risk of Pantoea on Rice Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:2608. [PMID: 36235474 PMCID: PMC9570785 DOI: 10.3390/plants11192608] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 05/26/2023]
Abstract
Bacteria from the genus Pantoea have been reported to be widely distributed in rice paddy environments with contradictory roles. Some strains promoted rice growth and protected rice from pathogen infection or abiotic stress, but other strain exhibited virulence to rice, even causing severe rice disease. In order to effectively utilize Pantoea in rice production, this paper analyzed the mechanisms underlying beneficial and harmful effects of Pantoea on rice growth. The beneficial effect of Pantoea on rice plants includes growth promotion, abiotic alleviation and disease inhibition. The growth promotion may be mainly attributed to nitrogen-fixation, phosphate solubilization, plant physiological change, the biosynthesis of siderophores, exopolysaccharides, 1-aminocyclopropane-1-carboxylic acid deaminase and phytohormones, including cytokinin, indole-3-acetic acid (IAA), auxins, abscisic acid and gibberellic acid, while the disease inhibition may be mainly due to the induced resistance, nutrient and spatial competition, as well as the production of a variety of antibiotics. The pathogenic mechanism of Pantoea can be mainly attributed to bacterial motility, production of phytohormones such as IAA, quorum sensing-related signal molecules and a series of cell wall-degrading enzymes, while the pathogenicity-related genes of Pantoea include genes encoding plasmids, such as the pPATH plasmid, the hypersensitive response and pathogenicity system, as well as various types of secretion systems, such as T3SS and T6SS. In addition, the existing scientific problems in this field were discussed and future research prospects were proposed.
Collapse
Affiliation(s)
- Luqiong Lv
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of ZhejiangProvince, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of ZhejiangProvince, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur 411, Oman
| | - Ye Tian
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of ZhejiangProvince, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-khod 123, Oman
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of ZhejiangProvince, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Oesterle ME, Conner T, Bunch M, Fleming A, Johnson P, Bialonska D. Do Kinesio Tapes Increase the Skin Exposure to Pathogenic Bacteria? Am J Infect Control 2022; 51:401-405. [PMID: 35870663 DOI: 10.1016/j.ajic.2022.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Kinesio tapes (KTs) are tapes used in physical therapy and athletics. We sought to evaluate if wearing KTs for extended periods of time increases exposure to antibiotic resistant opportunistic pathogens and effects normal human skin bacteria. METHODS The study consisted of ten volunteers wearing nine KTs on their arms for five consecutive days. Microorganisms were isolated from fragments collected on the second and fifth day then analyzed. Bacteria were identified using the BIOLOG system. Resistance to selected antibiotics was performed using E-Test. The effect of KTs on the growth of Staphylococcus aureus, Staphylococcus epidermidis, and Micrococcus luteus was evaluated in a diffusion-based assay. RESULTS We found that KTs accumulated environmental bacteria. Among 22 species 8 were opportunistic pathogens, and all of them exhibited resistance to at least one antibiotic. None of the tapes produced inhibition zones in S. aureus. One tape, Leukotape P, caused growth inhibition in non-pathogenic S. epidermidis and M. luteus. The adhesive material of the tapes inhibited the growth of all bacteria. CONCLUSIONS These results indicate that KTs may increase the exposure to antibiotic resistant pathogens which can accumulate from the environment. Further, extended exposure could lead to changes in normal skin microbiota, potentially contributing to increased risks of skin infections.
Collapse
Affiliation(s)
| | - Teresa Conner
- Division of Health Sciences, Idaho State University, Pocatello, ID, USA
| | - Madison Bunch
- Department of Biology, University of North Georgia, Dahlonega, GA, USA
| | - Andi Fleming
- Department of Biology, University of North Georgia, Dahlonega, GA, USA
| | - Paul Johnson
- Department of Biology, University of North Georgia, 332 Sunset Drive, Dahlonega GA, USA
| | - Dobrusia Bialonska
- Division of Health Sciences, Idaho State University, Pocatello, ID, USA.
| |
Collapse
|
13
|
Gan Y, Bai M, Lin X, Liu K, Huang B, Jiang X, Liu Y, Gao C. Improvement of macrolactins production by the genetic adaptation of Bacillus siamensis A72 to saline stress via adaptive laboratory evolution. Microb Cell Fact 2022; 21:147. [PMID: 35854349 PMCID: PMC9294813 DOI: 10.1186/s12934-022-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Macrolactins, a type of macrolide antibiotic, are toxic to the producer strains. As such, its level is usually maintained below the lethal concentration during the fermentation process. To improve the production of macrolactins, we applied adaptive laboratory evolution technology to engineer a saline-resistant mutant strain. The hypothesis that strains with saline resistance show improved macrolactins production was investigated. RESULTS Using saline stress as a selective pressure, we engineered a mutant strain with saline resistance coupled with enhanced macrolactins production within 60 days using a self-made device. As compared with the parental strain, the evolved strain produced macrolactins with 11.93% improvement in non-saline stress fermentation medium containing 50 g/L glucose, when the glucose concentration increased to 70 g/L, the evolved strain produced macrolactins with 71.04% improvement. RNA sequencing and metabolomics results revealed that amino acid metabolism was involved in the production of macrolactins in the evolved strain. Furthermore, genome sequencing of the evolved strain revealed a candidate mutation, hisDD41Y, that was causal for the improved MLNs production, it was 3.42 times higher than the control in the overexpression hisDD41Y strain. Results revealed that saline resistance protected the producer strain from feedback inhibition of end-product (macrolide antibiotic), resulting in enhanced MLNs production. CONCLUSIONS In the present work, we successfully engineered a mutant strain with enhanced macrolactins production by adaptive laboratory evolution using saline stress as a selective pressure. Based on physiological, transcriptomic and genetic analysis, amino acid metabolism was found to benefit macrolactins production improvement. Our strategy might be applicable to improve the production of other kinds of macrolide antibiotics and other toxic compounds. The identification of the hisD mutation will allow for the deduction of metabolic engineering strategies in future research.
Collapse
Affiliation(s)
- Yuman Gan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| | - Meng Bai
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Xiao Lin
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Bingyao Huang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Xiaodong Jiang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| |
Collapse
|
14
|
|
15
|
Sanz-García F, Gil-Gil T, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. Int J Mol Sci 2021; 22:8080. [PMID: 34360847 PMCID: PMC8347278 DOI: 10.3390/ijms22158080] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.
Collapse
Affiliation(s)
| | | | | | | | - José L. Martínez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (F.S.-G.); (T.G.-G.); (P.L.); (L.E.O.-S.); (S.H.-A.)
| | | |
Collapse
|
16
|
Salvetti E, Campedelli I, Larini I, Conedera G, Torriani S. Exploring Antibiotic Resistance Diversity in Leuconostoc spp. by a Genome-Based Approach: Focus on the lsaA Gene. Microorganisms 2021; 9:microorganisms9030491. [PMID: 33652718 PMCID: PMC7996808 DOI: 10.3390/microorganisms9030491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/29/2023] Open
Abstract
Leuconostoc spp. are environmental microorganisms commonly associated with fermented foods. Absence of antibiotic resistance (AR) in bacteria is a critical issue for global food safety. Herein, we updated the occurrence of AR genes in the Leuconostoc genus through in silico analyses of the genomes of 17 type strains. A total of 131 putative AR traits associated with the main clinically relevant antibiotics were detected. We found, for the first time, the lsaA gene in L. fallax ATCC 700006T and L. pseudomesenteroides NCDO 768T. Their amino acid sequences displayed high similarities (59.07% and 52.21%) with LsaA of Enterococcusfaecalis V583, involved in clindamycin (CLI) and quinupristin-dalfopristin (QUD) resistance. This trait has different distribution patterns in Leuconostoc nontype strains-i.e., L. pseudomesenteroides, L. lactis and L. falkenbergense isolates from fermented vegetables, cheeses, and starters. To better explore the role of lsaA, MIC for CLI and QUD were assessed in ATCC 700006T and NCDO 768T; both strains were resistant towards CLI, potentially linking lsaA to their resistant phenotype. Contrarily, NCDO 768T was sensitive towards QUD; however, expression of lsaA increased in presence of this antibiotic, indicating an active involvement of this trait and thus suggesting a revision of the QUD thresholds for this species.
Collapse
Affiliation(s)
- Elisa Salvetti
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.S.); (I.L.); (G.C.)
| | | | - Ilaria Larini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.S.); (I.L.); (G.C.)
| | - Giada Conedera
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.S.); (I.L.); (G.C.)
| | - Sandra Torriani
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.S.); (I.L.); (G.C.)
- Correspondence:
| |
Collapse
|