1
|
Wang X, Dai J, Yang W, Yao Y, Zhang J, Liu K, Lu X, Gao R, Chen Y, Hu J, Gu M, Hu S, Liu X, Liu X. Spray vaccination with a safe and bivalent H9N2 recombinant chimeric NDV vector vaccine elicits complete protection against NDV and H9N2 AIV challenge. Vet Res 2025; 56:24. [PMID: 39891242 PMCID: PMC11786375 DOI: 10.1186/s13567-025-01448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/23/2024] [Indexed: 02/03/2025] Open
Abstract
Newcastle disease virus (NDV) and H9N2 avian influenza virus (AIV) represent significant pathogenic risks to the poultry industry, leading to considerable economic losses. Vaccination is a widely used preventive measure against these pathogens, yet the lack of a live bivalent vaccine targeting NDV and H9N2 AIV imposes a heavy vaccination burden. Previously, we constructed a genotype-matched chimeric NDV vector, LX-OAI4S, in which the genotype I NDV backbone was replaced with the ectodomain of haemagglutinin-neuraminidase (HN) and modified using the attenuated F gene from the genotype VII vaccine strain A-VII. Based on the LX-OAI4S vector, we successfully generated three H9N2 recombinant viruses: LX-OAI4S-NPU-HA, LX-OAI4S-MU-HA, and LX-OAI4S-HNU-HA. These recombinants incorporated the H9N2 HA gene, flanked by untranslated regions (UTRs) from the NP, M, or HN gene of the NDV LX strain, inserted between the P and M genes of LX-OAI4S. The vaccine candidate LX-OAI4S-NPU-HA induced a more robust immune response in chickens against H9N2 AIV and NDV than the other two recombinants. This response effectively protects against virus shedding and lethal virus challenge. Furthermore, spray vaccination with LX-OAI4S-NPU-HA showed protective efficacy against H9N2 AIV and NDV. This study offers a promising strategy for comprehensive protection in regions threatened by H9N2 AIV and NDV.
Collapse
Affiliation(s)
- Xiaoquan Wang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, China
| | - Jing Dai
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225000, China
| | - Wenhao Yang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, China
| | - Yao Yao
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225000, China
| | - Jin Zhang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225000, China
| | - Kaituo Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225000, China
| | - Xiaolong Lu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, China
| | - Ruyi Gao
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, China
| | - Yu Chen
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, China
| | - Jiao Hu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, China
| | - Min Gu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, China
| | - Shunlin Hu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, China
| | - Xiufan Liu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225000, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, China.
| | - Xiaowen Liu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225000, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
2
|
Zhang P, Yan G, Liu Q, Yang X, Zhang J, Chen X, Wang H, Zhang L, Sui X, Bai X, Xiong Y, Zhang Z. Genetic Diversity and Potential Transmission of Escherichia albertii in a Poultry-Breeding Rural Village. Jpn J Infect Dis 2025; 78:19-27. [PMID: 39343555 DOI: 10.7883/yoken.jjid.2024.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Escherichia albertii is an emerging foodborne pathogen that causes diarrhea. Although various animals, especially poultry, serve as reservoirs of E. albertii, the transmission of E. albertii among reservoirs and the associated risks to humans remain unclear. This study investigated an E. albertii-infected infant exposed to poultry, and collected samples from contact persons, poultry, and the environment to better understand the transmission dynamics of E. albertii. One E. albertii isolate from a contact person, seven isolates from poultry, and six isolates from the environment were recovered. Whole-genome sequencing analysis showed that eight strains derived from poultry or environment and classified as ST4633 shared great similarity (core genome single-nucleotide polymorphisms [cgSNPs] ≤20). However, the patient-derived strain ESA311 had a cgSNP difference of 1165 with the human strain ESA339 and differed from poultry and environmental strains (cgSNP range 2417-14997), indicating distant relatedness. The whole-genome phylogeny showed that several human-derived E. albertii strains clustered with those of animal origin. Our results suggest that family-bred poultry constitute a possible reservoir for E. albertii, with the environment acting as a crucial vector for the spread of these bacteria and posing a risk to humans. Further surveillance of poultry is required to elucidate the public health risks associated with E. albertii infections.
Collapse
Affiliation(s)
- Peihua Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, China
| | - Guodong Yan
- Zigong Center for Disease Control and Prevention, China
| | - Qian Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, China
| | - Xi Yang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, China
| | - Jie Zhang
- Zigong Center for Disease Control and Prevention, China
| | - Xi Chen
- Zigong Center for Disease Control and Prevention, China
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, China
| | - Ling Zhang
- Zigong Center for Disease Control and Prevention, China
| | - Xinxia Sui
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, China
| | - Xiangning Bai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, China
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Norway
| | - Yanwen Xiong
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, China
| | | |
Collapse
|
3
|
Amoia CF, Hakizimana JN, Chengula AA, Munir M, Misinzo G, Weger-Lucarelli J. Genomic Diversity and Geographic Distribution of Newcastle Disease Virus Genotypes in Africa: Implications for Diagnosis, Vaccination, and Regional Collaboration. Viruses 2024; 16:795. [PMID: 38793675 PMCID: PMC11125703 DOI: 10.3390/v16050795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The emergence of new virulent genotypes and the continued genetic drift of Newcastle disease virus (NDV) implies that distinct genotypes of NDV are simultaneously evolving in different geographic locations across the globe, including throughout Africa, where NDV is an important veterinary pathogen. Expanding the genomic diversity of NDV increases the possibility of diagnostic and vaccine failures. In this review, we systematically analyzed the genetic diversity of NDV genotypes in Africa using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Information published between 1999 and 2022 were used to obtain the genetic background of different genotypes of NDV and their geographic distributions in Africa. The following genotypes were reported in Africa: I, II, III, IV, V, VI, VII, VIII, XI, XIII, XIV, XVII, XVIII, XX, and XXI. A new putative genotype has been detected in the Democratic Republic of the Congo. However, of 54 African countries, only 26 countries regularly report information on NDV outbreaks, suggesting that this number may be vastly underestimated. With eight different genotypes, Nigeria is the country with the greatest genotypic diversity of NDV among African countries. Genotype VII is the most prevalent group of NDV in Africa, which was reported in 15 countries. A phylogeographic analysis of NDV sequences revealed transboundary transmission of the virus in Eastern Africa, Western and Central Africa, and in Southern Africa. A regional and continental collaboration is recommended for improved NDV risk management in Africa.
Collapse
Affiliation(s)
- Charlie F. Amoia
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro 67125, Tanzania;
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro 67125, Tanzania
| | - Jean N. Hakizimana
- OR Tambo Africa Research Chair for Viral Epidemics, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro 67125, Tanzania;
| | - Augustino A. Chengula
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro 67125, Tanzania;
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK;
| | - Gerald Misinzo
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro 67125, Tanzania;
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro 67125, Tanzania
- OR Tambo Africa Research Chair for Viral Epidemics, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro 67125, Tanzania;
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
4
|
Fan L, Liang Z, Ren J, Chen Y, Zhu H, Chen Y, Xiang B, Lin Q, Ding C, Chen L, Ren T. Newcastle disease virus activates the PI3K/AKT signaling pathway by targeting PHLPP2 degradation to delay cell apoptosis and promote viral replication. Vet Microbiol 2024; 289:109949. [PMID: 38128444 DOI: 10.1016/j.vetmic.2023.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Newcastle disease (ND) is a highly pathogenic, contagious, and fatal infectious disease in poultry caused by the Newcastle disease virus (NDV). The PI3K/AKT signaling pathway is a phosphorylation cascade that participates in regulating several cellular functions. Viruses reportedly regulate the course of infection through the PI3K/AKT axis. Here, we aimed to analyze the pathogenesis of NDV infection mediated by the PI3K/AKT signaling pathway activation. We found that NDV infection can phosphorylate AKT to activate the PI3K/AKT axis both in vitro and in vivo. Flow cytometry and Caspase-3 activity assay showed that NDV infection could inhibit cell apoptosis. The activation or inhibition of the PI3K/AKT signaling pathway activity significantly inhibited or promoted NDV-mediated apoptosis. Furthermore, inhibition of cell apoptosis significantly promoted NDV replication. Overall, our results showed that NDV infection activates the PI3K/AKT signaling pathway and inhibits cell apoptosis, thus promoting viral replication. In this context, the reduced expression of PHLPP2 protein mediated by NDV infection could be inhibited by MG132. PHLPP2 expression reversely and positively regulated NDV replication and cell apoptosis, respectively. These results indicated that NDV infection-mediated activation of the PI3K/AKT signaling pathway and the inhibition of apoptosis depend on the ubiquitin-proteasome degradation of the PHLPP2 protein. Co-IP and indirect immunofluorescence results showed that NDV V protein could interact with PHLPP2 protein, indicating that NDV targeted PHLPP2 protein degradation through V protein to activate the PI3K/AKT signaling pathway. This study deepens our understanding of the molecular mechanisms of NDV infection, providing a theoretical basis for ND prevention and control.
Collapse
Affiliation(s)
- Lei Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinlian Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yichun Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - He Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yanan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201 Yunnan, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
| |
Collapse
|
5
|
Development and Evaluation of a Blocking Lateral Flow Assay Strip for Detection of Newcastle Disease Virus Antibodies. Vet Sci 2023; 10:vetsci10020152. [PMID: 36851456 PMCID: PMC9966506 DOI: 10.3390/vetsci10020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Newcastle disease (ND) is an acute septicemic infectious disease caused by Newcastle disease virus (NDV). Considering that vaccination is currently the main modality for the prevention of ND, it is essential to assess the effectiveness of clinical immunization. In this study, we have developed a blocking lateral flow assay (bLFA) strip for the rapid detection of NDV antibodies using the monoclonal antibody 9C1 against haemagglutinin-neuraminidase (HN), which allows for the determination of an NDV-specific antibody titer within 10 min at room temperature. In addition, the bLFA strip has no cross-reactivity with the positive serum of other avian pathogens including avian influenza subtypes H5, H7, and H9, MD, IBD, IB, EDS, and avian adenovirus. The ability of the bLFA strip for detecting a neutralizing antibody was also estimated. The results showed that the chicken NDV hyperimmunized serum had a complete blocking (100%) titer of 11 log 2, and half-blocking titer of 13 log 2, which are 4 times less than and the same as that of the HI test (13 log 2), and 8 and 2 times less than that of the VN test (14 log 2), respectively. A total of 510 clinical samples were tested for NDV antibodies. The coincidence rate between the results of the bLFA strip and HI test was 97.65%. Therefore, it is an ideal alternative method for assessing the clinical immunity of ND vaccines in the field in real-time.
Collapse
|
6
|
Bahoussi AN, Shah PT, Zhao JQ, Wang PH, Guo YY, Wu C, Xing L. Multiple potential recombination events among Newcastle disease virus genomes in China between 1946 and 2020. Front Vet Sci 2023; 10:1136855. [PMID: 37206434 PMCID: PMC10189042 DOI: 10.3389/fvets.2023.1136855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Newcastle Disease Virus (NDV) is a highly adaptable virus with large genetic diversity that has been widely studied for its oncolytic activities and potential as a vector vaccine. This study investigated the molecular characteristics of 517 complete NDV strains collected from 26 provinces across China between 1946-2020. Methods Herein, phylogenetic, phylogeographic network, recombination, and amino acid variability analyses were performed to reveal the evolutionary characteristics of NDV in China. Results and discussions Phylogenetic analysis revealed the existence of two major groups: GI, which comprises a single genotype Ib, and GII group encompassing eight genotypes (I, II, III, VI. VII. VIII, IX and XII). The Ib genotype is found to dominate China (34%), particularly South and East China, followed by VII (24%) and VI (22%). NDV strains from the two identified groups exhibited great dissimilarities at the nucleotide level of phosphoprotein (P), matrix protein (M), fusion protein (F), and haemagglutinin-neuraminidase (HN) genes. Consistently, the phylogeographic network analysis revealed two main Network Clusters linked to a possible ancestral node from Hunan (strain MH289846.1). Importantly, we identified 34 potential recombination events that involved mostly strains from VII and Ib genotypes. A recombinant of genotype XII isolated in 2019 seems to emerge newly in Southern China. Further, the vaccine strains are found to be highly involved in potential recombination. Therefore, since the influence of recombination on NDV virulence cannot be predicted, this report's findings need to be considered for the security of NDV oncolytic application and the safety of NDV live attenuated vaccines.
Collapse
Affiliation(s)
| | - Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jia-Qi Zhao
- Department of Bioengineering, College of Life Science, Shanxi University, Taiyuan, China
| | - Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yan-Yan Guo
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- *Correspondence: Li Xing,
| |
Collapse
|
7
|
Mao Q, Ma S, Schrickel PL, Zhao P, Wang J, Zhang Y, Li S, Wang C. Review detection of Newcastle disease virus. Front Vet Sci 2022; 9:936251. [PMID: 35982920 PMCID: PMC9378970 DOI: 10.3389/fvets.2022.936251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Newcastle disease (ND) is an acute and highly contagious disease caused by the Newcastle disease virus (NDV) infecting poultry, which has caused great harm to the poultry industry around the world. Rapid diagnosis of NDV is important to early treatment and early institution of control measures. In this review, we comprehensively summarize the most recent research into NDV, including historical overview, molecular structure, and infection mechanism. We then focus on detection strategies for NDV, including virus isolation, serological assays (such as hemagglutination and hemagglutination-inhibition tests, enzyme linked immunosorbent assay, reporter virus neutralization test, Immunofluorescence assay, and Immune colloidal gold technique), molecular assays (such as reverse transcription polymerase chain reaction, real-time quantitative PCR, and loop-mediated isothermal amplification) and other assays. The performance of the different serological and molecular biology assays currently available was also analyzed. To conclude, we examine the limitations of currently available strategies for the detection of NDV to lay the groundwork for new detection assays.
Collapse
Affiliation(s)
- Qian Mao
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Shengming Ma
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Philip Luke Schrickel
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Pengwei Zhao
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Jingya Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Yuhua Zhang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Shuangyu Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Chengbao Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
- *Correspondence: Chengbao Wang
| |
Collapse
|
8
|
Surveillance of Class I Newcastle Disease Virus at Live Bird Markets in China and Identification of Variants with Increased Virulence and Replication Capacity. J Virol 2022; 96:e0024122. [PMID: 35510864 DOI: 10.1128/jvi.00241-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, 232 class I Newcastle disease viruses (NDVs) were identified from multiple bird species at nationwide live bird markets (LBMs) from 2017 to 2019 in China. Phylogenetic analysis indicated that all 232 isolates were clustered into genotype 1.1.2 of class I on the basis of the fusion (F) gene sequences, which were distinct from the genotypes identified in other countries. Most of the isolates (212/232) were shown to have the typical F gene molecular characteristics of class I NDVs, while a few (20/232) contained mutations at the site of the conventional start codon of the F gene, which resulted in open reading frames (ORFs) altered in length. The isolates with ACG, CTA, and ATA mutations showed different levels of increased virulence and replication capacity, suggesting that these viruses may be transitional types during the evolution of class I NDVs from avirulent to virulent. Further evaluation of biological characteristics with recombinant viruses obtained by reverse genetics demonstrated that the ATG located at genomic positions 4523 to 4525 was the authentic start codon in the F gene of class I NDV, and the specific ATA mutations which contributed to the expression of F protein on the surface of infected cells were the key determinants of increased replication capacity and virulence. Interestingly, the mutation at the corresponding site of genotype II LaSota of class II had no effects on the virulence and replication capacity in chickens. Our results suggest that the alteration of virulence and replication capacity caused by specific mutations in the F gene could be a specific characteristic of class I NDVs and indicate the possibility of the emergence of virulent NDVs due to the persistent circulation of class I NDVs. IMPORTANCE The available information on the distribution, genetic diversity, evolution, and biological characteristics of class I Newcastle disease viruses (NDVs) in domestic poultry is currently very limited. Here, identification of class I NDVs at nationwide live bird markets (LBMs) in China was performed and representative isolates were characterized. A widespread distribution of genotype 1.1.2 of class I NDVs was found in multiple bird species at LBMs in China. Though most isolates demonstrated typical molecular characteristics of class I NDVs, a few that contained specific mutations at the site of the conventional start codon of the fusion gene with increased virulence and replication capacity were identified for the first time. Our findings indicate that the virulence of class I NDVs could have evolved, and the widespread transmission and circulation of class I NDVs may represent a potential threat for disease outbreaks in poultry.
Collapse
|