1
|
Qin C, Zhang W, Xiao C, Qu Y, Xiao J, Wu X, Zhang L, Wang Y, He L, Zhu J, Wang W, Li Y, Sun L, Jiang X. Shared genetic basis connects smoking behaviors and bone health: insights from a genome-wide cross-trait analysis. J Bone Miner Res 2024; 39:918-928. [PMID: 38843381 DOI: 10.1093/jbmr/zjae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/09/2024] [Accepted: 05/13/2024] [Indexed: 08/07/2024]
Abstract
Although the negative association of tobacco smoking with osteoporosis is well-documented, little is known regarding the shared genetic basis underlying these conditions. In this study, we aim to investigate a shared genetic architecture between smoking and heel estimated bone mineral density (eBMD), a reliable proxy for osteoporosis. We conducted a comprehensive genome-wide cross-trait analysis to identify genetic correlation, pleiotropic loci and causal relationship of smoking with eBMD, leveraging summary statistics of the hitherto largest genome-wide association studies conducted in European ancestry for smoking initiation (Nsmoker = 1 175 108, Nnonsmoker = 1 493 921), heaviness (cigarettes per day, N = 618 489), cessation (Ncurrent smoker = 304 244, Nformer smoker = 843 028), and eBMD (N = 426 824). A significant negative global genetic correlation was found for smoking cessation and eBMD (${r}_g$ = -0.051, P = 0.01), while we failed to identify a significant global genetic correlation of smoking initiation or heaviness with eBMD. Partitioning the whole genome into independent blocks, we observed 6 significant shared local signals for smoking and eBMD, with 22q13.1 showing the strongest regional genetic correlation. Such a genetic overlap was further supported by 71 pleiotropic loci identified in the cross-trait meta-analysis. Mendelian randomization identified no causal effect of smoking initiation (beta = -0.003 g/cm2, 95% CI = -0.033 to 0.027) or heaviness (beta = -0.017 g/cm2, 95% CI = -0.072 to 0.038) on eBMD, but a putative causal effect of genetic predisposition to being a current smoker was associated with a lower eBMD compared to former smokers (beta = -0.100 g/cm2, 95% CI = -0.181 to -0.018). Our study demonstrates a pronounced biological pleiotropy as well as a putative causal link between current smoking status and eBMD, providing novel insights into the primary prevention and modifiable intervention of osteoporosis by advocating individuals to avoid, reduce or quit smoking as early as possible.
Collapse
Affiliation(s)
- Chenjiarui Qin
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wenqiang Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changfeng Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yang Qu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jinyu Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- National Cancer Institute, Rockville, MD 610041, United States
| | - Li Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yutong Wang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin He
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jingwei Zhu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wenzhi Wang
- Department of Osteoporosis/Rheumatology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yun Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Sun
- Department of Osteoporosis/Rheumatology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xia Jiang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Solna, Stockholm, 17177, Sweden
| |
Collapse
|
2
|
Wu C, Liu H, Zuo Q, Jiang A, Wang C, Lv N, Lin R, Wang Y, Zong K, Wei Y, Huang Q, Li Q, Yang P, Zhao R, Liu J. Identifying novel risk genes in intracranial aneurysm by integrating human proteomes and genetics. Brain 2024; 147:2817-2825. [PMID: 39084678 DOI: 10.1093/brain/awae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 08/02/2024] Open
Abstract
Genome-wide association studies (GWAS) have become increasingly popular for detecting numerous loci associated with intracranial aneurysm (IA), but how these loci function remains unclear. In this study, we employed an integrative analytical pipeline to efficiently transform genetic associations and identify novel genes for IA. Using multidimensional high-throughput data, we integrated proteome-wide association studies (PWAS), transcriptome-wide association studies (TWAS), Mendelian randomization (MR) and Bayesian co-localization analyses to prioritize genes that can increase IA risk by altering their expression and protein abundances in the brain and blood. Moreover, single-cell RNA sequencing (scRNA-seq) of the circle of Willis was performed to enrich filtered genes in cells, and gene set enrichment analysis (GSEA) was conducted for each gene using bulk RNA-seq data for IA. No significant genes with cis-regulated plasma protein levels were proven to be associated with IA. The protein abundances of five genes in the brain were found to be associated with IA. According to cellular enrichment analysis, these five genes were expressed mainly in the endothelium, fibroblasts and vascular smooth muscle cells. Only three genes, CNNM2, GPRIN3 and UFL1, passed MR and Bayesian co-localization analyses. While UFL1 was not validated in confirmation PWAS as it was not profiled, it was validated in TWAS. GSEA suggested these three genes are associated with the cell cycle. In addition, the protein abundance of CNNM2 was found to be associated with IA rupture (based on PWAS, MR and co-localization analyses). Our findings indicated that CNNM2, GPRIN3 and UFL1 (CNNM2 correlated with IA rupture) are potential IA risk genes that may provide a broad hint for future research on possible mechanisms and therapeutic targets for IA.
Collapse
Affiliation(s)
- Congyan Wu
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Hanchen Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Qiao Zuo
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Chuanchuan Wang
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Nan Lv
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Ruyue Lin
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Yonghui Wang
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Kang Zong
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Yanpeng Wei
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Qinghai Huang
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Qiang Li
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Rui Zhao
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| |
Collapse
|
3
|
Pérez-Pérez A, Courel Del Río V, García Fernández S, Castaño González L, Riaño Galán I. Hypomagnesemia, a diagnosis to consider. An Pediatr (Barc) 2024; 100:292-293. [PMID: 38553261 DOI: 10.1016/j.anpede.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/31/2024] [Indexed: 04/28/2024] Open
Affiliation(s)
| | | | | | - Luis Castaño González
- Hospital Universitario Cruces, UPV/EHU, IIS Biocruces Bizkaia, CIBERDEM/CIBERER, Endo-ERN, Barakaldo/Bilbao, Spain
| | - Isolina Riaño Galán
- Universidad de Oviedo, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
4
|
Bosman W, Franken GAC, de Las Heras J, Madariaga L, Barakat TS, Oostenbrink R, van Slegtenhorst M, Perdomo-Ramírez A, Claverie-Martín F, van Eerde AM, Vargas-Poussou R, Dubourg LD, González-Recio I, Martínez-Cruz LA, de Baaij JHF, Hoenderop JGJ. Hypomagnesaemia with varying degrees of extrarenal symptoms as a consequence of heterozygous CNNM2 variants. Sci Rep 2024; 14:6917. [PMID: 38519529 PMCID: PMC10959950 DOI: 10.1038/s41598-024-57061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Variants in the CNNM2 gene are causative for hypomagnesaemia, seizures and intellectual disability, although the phenotypes can be variable. This study aims to understand the genotype-phenotype relationship in affected individuals with CNNM2 variants by phenotypic, functional and structural analysis of new as well as previously reported variants. This results in the identification of seven variants that significantly affect CNNM2-mediated Mg2+ transport. Pathogenicity of these variants is further supported by structural modelling, which predicts CNNM2 structure to be affected by all of them. Strikingly, seizures and intellectual disability are absent in 4 out of 7 cases, indicating these phenotypes are caused either by specific CNNM2 variant only or by additional risk factors. Moreover, in line with sporadic observations from previous reports, CNNM2 variants might be associated with disturbances in parathyroid hormone and Ca2+ homeostasis.
Collapse
Affiliation(s)
- Willem Bosman
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
| | - Gijs A C Franken
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
| | - Javier de Las Heras
- Division of Pediatric Metabolism, Cruces University Hospital, CIBER-ER, Metab-ERN, University of the Basque Country (UPV/EHU), Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Leire Madariaga
- Pediatric Nephrology Department, Cruces University Hospital, CIBERDEM, CIBER-ER, Endo-ERN, Biocruces Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Barakaldo, Spain
| | - Tahsin Stefan Barakat
- Deparment of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
| | - Rianne Oostenbrink
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
- Department of General Pediatrics, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Ana Perdomo-Ramírez
- Unidad de Investigación, Renal Tube Group, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Félix Claverie-Martín
- Unidad de Investigación, Renal Tube Group, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Rosa Vargas-Poussou
- Service de medecine genomique des maladies rares, AP-HP, universite Paris Cité, Paris, France
- Centre de reference des maladies renales hereditaires de l'enfant et de l'adulte MARHEA, hopital Européen Georges Pompidou, Paris, France
- CNRS, centre de recherche des Cordeliers, Inserm UMRS 1138, Sorbonne universite, universite Paris Cité, Paris, France
| | - Laurence Derain Dubourg
- Hôpital Édouard Herriot, Hospices civils de Lyon, service de nephrologie, dialyse, hypertension et exploration fonctionnelle renale, Lyon, France
- Centre de reference des maladies renales rares et phosphocalciques, Nephrogones, Hôpital Femme-Mère-Enfant Bron, Bron, France
- Faculté de medecine Lyon est, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Irene González-Recio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park, Derio, Bizkaia, Spain
| | - Luis Alfonso Martínez-Cruz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park, Derio, Bizkaia, Spain
| | | | | |
Collapse
|
5
|
Chen YS, Gehring K. New insights into the structure and function of CNNM proteins. FEBS J 2023; 290:5475-5495. [PMID: 37222397 DOI: 10.1111/febs.16872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Magnesium (Mg2+ ) is the most abundant divalent cation in cells and plays key roles in almost all biological processes. CBS-pair domain divalent metal cation transport mediators (CNNMs) are a newly characterized class of Mg2+ transporters present throughout biology. Originally discovered in bacteria, there are four CNNM proteins in humans, which are involved in divalent cation transport, genetic diseases, and cancer. Eukaryotic CNNMs are composed of four domains: an extracellular domain, a transmembrane domain, a cystathionine-β-synthase (CBS)-pair domain, and a cyclic nucleotide-binding homology domain. The transmembrane and CBS-pair core are the defining features of CNNM proteins with over 20 000 protein sequences known from over 8000 species. Here, we review the structural and functional studies of eukaryotic and prokaryotic CNNMs that underlie our understanding of their regulation and mechanism of ion transport. Recent structures of prokaryotic CNNMs confirm the transmembrane domain mediates ion transport with the CBS-pair domain likely playing a regulatory role through binding divalent cations. Studies of mammalian CNNMs have identified new binding partners. These advances are driving progress in understanding this deeply conserved and widespread family of ion transporters.
Collapse
Affiliation(s)
- Yu Seby Chen
- Department of Biochemistry & Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Kalle Gehring
- Department of Biochemistry & Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Bakker MK, van Straten T, Chong M, Paré G, Gill D, Ruigrok YM. Anti-Epileptic Drug Target Perturbation and Intracranial Aneurysm Risk: Mendelian Randomization and Colocalization Study. Stroke 2023; 54:208-216. [PMID: 36300369 PMCID: PMC9794136 DOI: 10.1161/strokeaha.122.040598] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND In a genome-wide association study of intracranial aneurysms (IA), enrichment was found between genes associated with IA and genes encoding targets of effective anti-epileptic drugs. Our aim was to assess if this pleiotropy is driven by shared disease mechanisms that could potentially highlight a treatment strategy for IA. METHODS Using 2-sample inverse-variance weighted Mendelian randomization and genetic colocalization analyses we assessed: (1) if epilepsy liability in general affects IA risk, and (2) whether changes in gene- and protein-expression levels of anti-epileptic drug targets in blood and arterial tissue may causally affect IA risk. RESULTS We found no overall effect of epilepsy liability on IA. Expression of 21 genes and 13 proteins corresponding to anti-epileptic drug targets supported a causal effect (P<0.05) on IA risk. Of those genes and proteins, genetic variants affecting CNNM2 levels showed strong evidence for colocalization with IA risk (posterior probability>70%). Higher CNNM2 levels in arterial tissue were associated with increased IA risk (odds ratio, 3.02; [95% CI, 2.32-3.94]; P=3.39×10-16). CNNM2 expression was best proxied by rs11191580. The magnitude of the effect of this variant was greater than would be expected if systemic blood pressure was the sole IA-causing mechanism in this locus. CONCLUSIONS CNNM2 is a driver of the pleiotropy between IA and anti-epileptic drug targets. Administration of the anti-epileptic drugs phenytoin, valproic acid, or carbamazepine may be expected to decrease CNNM2 levels and therefore subsequently decrease IA risk. CNNM2 is therefore an important target to investigate further for its role in the pathogenesis of IA.
Collapse
Affiliation(s)
- Mark K. Bakker
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, the Netherlands (M.K.B., T.v.S., Y.M.R.)
| | - Tijmen van Straten
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, the Netherlands (M.K.B., T.v.S., Y.M.R.)
| | - Michael Chong
- Population Health Research Institute; Thrombosis and Atherosclerosis Research Institute; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario (M.C., G.P.)
| | - Guillaume Paré
- Population Health Research Institute; Thrombosis and Atherosclerosis Research Institute; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario (M.C., G.P.)
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom (D.G.)
| | - Ynte M. Ruigrok
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, the Netherlands (M.K.B., T.v.S., Y.M.R.)
| |
Collapse
|
7
|
Tseng MH, Yang SS, Sung CC, Ding JJ, Hsu YJ, Chu SM, Lin SH. Novel CNNM2 Mutation Responsible for Autosomal-Dominant Hypomagnesemia With Seizure. Front Genet 2022; 13:875013. [PMID: 35846113 PMCID: PMC9277586 DOI: 10.3389/fgene.2022.875013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
CNNM2 is primarily expressed in the brain and distal convoluted tubule (DCT) of the kidney. Mutations in CNNM2 have been reported to cause hypomagnesemia, seizure, and intellectual disability (HSMR) syndrome. However, the clinical and functional effect of CNNM2 mutations remains incompletely understood. We report our clinical encounter with a 1-year-old infant with HSMR features. Mutation screening for this trio family was performed using next-generation sequencing (NGS)-based whole exome sequencing (WES) with the identified mutation verified by Sanger sequencing. We identified a de novo heterozygous mutation c.G1439T (R480L) in the essential cystathionine β-synthase (CBS) domain of CNNM2 encoding CNNM2 (cyclin M2) without any other gene mutations related to hypomagnesemia. The amino acid involved in this missense mutation was conserved in different species. It was also found to be pathogenic based on the different software prediction models and ACGME criteria. In vitro studies revealed a higher expression of the CNNM2-R480L mutant protein compared to that of the wild-type CNNM2. Like the CNNM2-wild type, proper localization of CNNM2-R480L was shown on immunocytochemistry images. The Mg2+ efflux assay in murine DCT (mDCT) cells revealed a significant increase in intracellular Mg2+ green in CNNM2-R480L compared to that in CNNM2-WT. By using a simulation model, we illustrate that the R480L mutation impaired the interaction between CNNM2 and ATP-Mg2+. We propose that this novel R480L mutation in the CNNM2 gene led to impaired binding between Mg2+-ATP and CNNM2 and diminished Mg2+ efflux, manifesting clinically as refractory hypomagnesemia.
Collapse
Affiliation(s)
- Min-Hua Tseng
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, Xiamen Chang Gung Hospital, Ximen, China
| | - Sung-Sen Yang
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Chien Sung
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jhao-Jhuang Ding
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ming Chu
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
8
|
Xu X, Hou S, Sun W, Zhu J, Yuan J, Cui Z, Wu D, Tang J. Rare hypomagnesemia, seizures, and mental retardation in a 4-month-old patient caused by novel CNNM2 mutation Tyr189Cys: Genetic analysis and review. Mol Genet Genomic Med 2022; 10:e1898. [PMID: 35170241 PMCID: PMC9000947 DOI: 10.1002/mgg3.1898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
Background Hypomagnesemia, seizures, and mental retardation (HSMR) syndrome is a rare genetic disease. Presently, only 24 cases have been reported and the clinical features of the disease are yet to be fully described, thereby making diagnosis challenging. Methods Trio‐whole‐exome sequencing was used for the patient and her parents, and the structure of the variant protein was analyzed by molecular dynamics. Finally, the characteristics of HSMR were summarized by reviewing the previous literature. Results The main disease manifestations in the patient were seizures, liver function damage, hypomagnesemia, atrial septal defect, and sinus arrhythmia. A novel mutation in CNNM2 (c.566A>G/p.Tyr189Cys) was identified by genetic detection. The parents were wild type, and the mutation was rated as pathogenic by American College of Medical Genetics and Genomics guidelines. Ab initio modeling and molecular dynamics simulation show that the mutation destroys the surrounding hydrogen bonds, which may reduce the local stability of the protein structure. In the previous literature, only 24 children with HSMR have been reported, mainly manifested as hypomagnesemia, mental retardation, seizures, and language and motor impairment. Conclusion We have reported the second case of HSMR in the Chinese population, which further expands the phenotypic spectrum of congenital heart disease and the variation spectrum of CNNM2.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pediatrics, Neurological Rehabilitation Center, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shu Hou
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weiwei Sun
- Beijing Chigene Translational Medical Research Center Co. Ltd, Beijing, China
| | - Jing Zhu
- Department of Pediatrics, Neurological Rehabilitation Center, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinjing Yuan
- Department of Pediatrics, Neurological Rehabilitation Center, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenzhen Cui
- Department of Pediatrics, Neurological Rehabilitation Center, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De Wu
- Department of Pediatrics, Neurological Rehabilitation Center, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiulai Tang
- Department of Pediatrics, Neurological Rehabilitation Center, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Abstract
CNNM/CorB proteins are a broadly conserved family of integral membrane proteins with close to 90,000 protein sequences known. They are associated with Mg2+ transport but it is not known if they mediate transport themselves or regulate other transporters. Here, we determine the crystal structure of an archaeal CorB protein in two conformations (apo and Mg2+-ATP bound). The transmembrane DUF21 domain exists in an inward-facing conformation with a Mg2+ ion coordinated by a conserved π-helix. In the absence of Mg2+-ATP, the CBS-pair domain adopts an elongated dimeric configuration with previously unobserved domain-domain contacts. Hydrogen-deuterium exchange mass spectrometry, analytical ultracentrifugation, and molecular dynamics experiments support a role of the structural rearrangements in mediating Mg2+-ATP sensing. Lastly, we use an in vitro, liposome-based assay to demonstrate direct Mg2+ transport by CorB proteins. These structural and functional insights provide a framework for understanding function of CNNMs in Mg2+ transport and associated diseases.
Collapse
|
10
|
Cyclin M2 (CNNM2) knockout mice show mild hypomagnesaemia and developmental defects. Sci Rep 2021; 11:8217. [PMID: 33859252 PMCID: PMC8050252 DOI: 10.1038/s41598-021-87548-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/26/2021] [Indexed: 02/02/2023] Open
Abstract
Patients with mutations in Cyclin M2 (CNNM2) suffer from hypomagnesaemia, seizures, and intellectual disability. Although the molecular function of CNNM2 is under debate, the protein is considered essential for renal Mg2+ reabsorption. Here, we used a Cnnm2 knock out mouse model, generated by CRISPR/Cas9 technology, to assess the role of CNNM2 in Mg2+ homeostasis. Breeding Cnnm2+/- mice resulted in a Mendelian distribution at embryonic day 18. Nevertheless, only four Cnnm2-/- pups were born alive. The Cnnm2-/- pups had a significantly lower serum Mg2+ concentration compared to wildtype littermates. Subsequently, adult Cnnm2+/- mice were fed with low, control, or high Mg2+ diets for two weeks. Adult Cnnm2+/- mice showed mild hypomagnesaemia compared to Cnnm2+/+ mice and increased serum Ca2+ levels, independent of dietary Mg2+ intake. Faecal analysis displayed increased Mg2+ and Ca2+ excretion in the Cnnm2+/- mice. Transcriptional profiling of Trpm6, Trpm7, and Slc41a1 in kidneys and colon did not reveal effects based on genotype. Microcomputed tomography analysis of the femurs demonstrated equal bone morphology and density. In conclusion, CNNM2 is vital for embryonic development and Mg2+ homeostasis. Our data suggest a previously undescribed role of CNNM2 in the intestine, which may contribute to the Mg2+ deficiency in mice and patients.
Collapse
|
11
|
Franken GAC, Müller D, Mignot C, Keren B, Lévy J, Tabet AC, Germanaud D, Tejada MI, Kroes HY, Nievelstein RAJ, Brimble E, Ruzhnikov M, Claverie-Martin F, Szczepańska M, Ćuk M, Latta F, Konrad M, Martínez-Cruz LA, Bindels RJM, Hoenderop JGJ, Schlingmann KP, de Baaij JHF. The phenotypic and genetic spectrum of patients with heterozygous mutations in cyclin M2 (CNNM2). Hum Mutat 2021; 42:473-486. [PMID: 33600043 PMCID: PMC8248058 DOI: 10.1002/humu.24182] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022]
Abstract
Hypomagnesemia, seizures, and intellectual disability (HSMR) syndrome is a rare disorder caused by mutations in the cyclin M2 (CNNM2) gene. Due to the limited number of cases, extensive phenotype analyses of these patients have not been performed, hindering early recognition of patients. In this study, we established the largest cohort of HSMR to date, aiming to improve recognition and diagnosis of this complex disorder. Eleven novel variants in CNNM2 were identified in nine single sporadic cases and in two families with suspected HSMR syndrome. 25Mg2+ uptake assays demonstrated loss‐of‐function in seven out of nine variants in CNNM2. Interestingly, the pathogenic mutations resulted in decreased plasma membrane expression. The phenotype of those affected by pathogenic CNNM2 mutations was compared with five previously reported cases of HSMR. All patients suffered from hypomagnesemia (0.44–0.72 mmol/L), which could not be fully corrected by Mg2+ supplementation. The majority of patients (77%) experienced generalized seizures and exhibited mild to moderate intellectual disability and speech delay. Moreover, severe obesity was present in most patients (89%). Our data establish hypomagnesemia, seizures, intellectual disability, and obesity as hallmarks of HSMR syndrome. The assessment of these major features offers a straightforward tool for the clinical diagnosis of HSMR.
Collapse
Affiliation(s)
- Gijs A C Franken
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolism, Charité Universitäts Medizin, Berlin, Germany
| | - Cyril Mignot
- Département de Genetique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Boris Keren
- Département de Génétique, Groupe Hospitalier, Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Jonathan Lévy
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Anne-Claude Tabet
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - David Germanaud
- Pediatric Neurology Department, Centre de Référence Déficiences Intellectuelles de Causes Rares, Service de Neurologie Pédiatrique, Hôpital Robert-Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - María-Isabel Tejada
- Osakidetza Basque Health Service, Cruces University Hospital, Genetics Service and Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Spanish Consortium for Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Hester Y Kroes
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rutger A J Nievelstein
- Department of Pediatric Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elise Brimble
- Department of Neurology and Neurological Sciences, Stanford Medicine, Stanford, California, USA
| | - Maria Ruzhnikov
- Department of Neurology and Neurological Sciences, Stanford Medicine, Stanford, California, USA
| | - Felix Claverie-Martin
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Maria Szczepańska
- Department of Pediatrics, Medical University of Silesia, Katowice, Poland
| | - Martin Ćuk
- Department of Pediatrics, Children's Hospital Zagreb, Zagreb, Croatia
| | - Femke Latta
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Konrad
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Luis A Martínez-Cruz
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, Derio, Spain
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Zhang H, Wu Y, Jiang Y. CNNM2-Related Disorders: Phenotype and Its Severity Were Associated With the Mode of Inheritance. Front Pediatr 2021; 9:699568. [PMID: 34604137 PMCID: PMC8481361 DOI: 10.3389/fped.2021.699568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
CNNM2 (Cystathionine-β-synthase-pair Domain Divalent Metal Cation Transport Mediator 2) pathogenic variants have been reported to cause hypomagnesemia, epilepsy, and intellectual disability/developmental delay (ID/DD). We identified two new cases with CNNM2 novel de novo pathogenic variants, c.814T>C and c.976G>C. They both presented with infantile-onset epilepsy with DD and hypomagnesemia refractory to magnesium supplementation. To date, 21 cases with CNNM2-related disorders have been reported. We combined all 23 cases to analyze the features of CNNM2-related disorders. The phenotypes can be classified into three types: type 1, autosomal dominant (AD) inherited simple hypomagnesemia; type 2, AD inherited hypomagnesemia with epilepsy and ID/DD; and type 3, autosomal recessive (AR) inherited hypomagnesemia with epilepsy and ID/DD. All five type 1 cases had no epilepsy or ID/DD; they all had hypomagnesemia, and three of them presented with symptoms secondary to hypomagnesemia. Fifteen type 2 patients could have ID/DD and seizures, which can be controlled with antiseizure medications (ASMs); their variations clustered in the DUF21 domain of CNNM2. All three type 3 patients had seizures from 1 to 6 days after birth; the seizures were refractory, and 1/3 had status epilepticus; ID/DD in these AR-inherited cases was more severe than that of AD-inherited cases; they all had abnormalities of brain magnetic resonance imaging (MRI). Except for one patient whose serum magnesium was the lower limit of normal, others had definite hypomagnesemia. Hypomagnesemia could be improved after magnesium supplement but could not return to the normal level. Variations in the CBS2 domain may be related to lower serum magnesium. However, there was no significant difference in the level of serum magnesium among the patients with three different types of CNNM2-related disorders. The severity of different phenotypes was therefore not explained by decreased serum magnesium. We expanded the spectrum of CNNM2 variants and classified the phenotypes of CNNM2-related disorders into three types. We found that DUF21 domain variations were most associated with CNNM2-related central nervous system phenotypes, whereas hypomagnesemia was more pronounced in patients with CBS2 domain variations, and AR-inherited CNNM2-related disorders had the most severe phenotype. These results provide important clues for further functional studies of CNNM2 and provide basic foundations for more accurate genetic counseling.
Collapse
Affiliation(s)
- Han Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|