1
|
Yan W, Ji L, Dong F, Chen L, Yuan R, Zhang P. Antimicrobial resistance and genomic analysis of Vibrio parahaemolyticus isolates from foodborne outbreaks, Huzhou, China, 2019-2023. Front Microbiol 2024; 15:1439522. [PMID: 39323890 PMCID: PMC11422088 DOI: 10.3389/fmicb.2024.1439522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
Objective The purpose of this study was to investigate the epidemiological and genomic characteristics of Vibrio parahaemolyticus (V. parahaemolyticus) isolates from outbreaks in Huzhou, China. Methods This study aims to analyze the epidemiological data on V. parahaemolyticus outbreaks reported in Huzhou from 2019 to 2023. A total of 70 V. parahaemolyticus outbreak isolates were collected. The antibiotic resistance, serotypes, molecular typing, and genomic characteristics of these isolates were analyzed. Results Most outbreaks of V. parahaemolyticus infection occurred in the summer, and the majority of outbreaks occurred in restaurants and rural banquets. High resistance rates were observed for ampicillin (AMP, 24.29%), followed by tetracycline (TET, 15.71%) and trimethoprim-sulfamethoxazole (SXT, 15.71%). The newly emerged serotype O10:K4 became dominant from 2021 to 2023, with most isolates belonging to ST3. The resistance gene blaCARB was frequently detected among these isolates. The pulsed-field gel electrophoresis (PFGE) and whole-genome single-nucleotide polymorphisms (wgSNPs) effectively differentiated the nine outbreaks. Conclusion The newly emerged serotype O10:K4 became dominant from 2021 to 2023, with most isolates being ST3. PFGE and WGS technologies provided reliable methods for typing and identifying V. parahaemolyticus for outbreaks.
Collapse
Affiliation(s)
- Wei Yan
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Lei Ji
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Fenfen Dong
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Rui Yuan
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Peng Zhang
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| |
Collapse
|
2
|
Huang Q, Zhang Y, Zhang M, Li X, Wang Q, Ji X, Chen R, Luo X, Ji S, Lu R. Assessment of Vibrionaceae prevalence in seafood from Qidong market and analysis of Vibrio parahaemolyticus strains. PLoS One 2024; 19:e0309304. [PMID: 39173020 PMCID: PMC11341049 DOI: 10.1371/journal.pone.0309304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
The aim of this study was to investigate the prevalence of Vibrionaceae family in retail seafood products available in the Qidong market during the summer of 2023 and to characterize Vibrio parahaemolyticus isolates, given that this bacterium is the leading cause of seafood-associated food poisoning. We successfully isolated a total of 240 Vibrionaceae strains from a pool of 718 seafood samples. The breakdown of the isolates included 146 Photobacterium damselae, 59 V. parahaemolyticus, 18 V. campbellii, and 11 V. alginolyticus. Among these, P. damselae and V. parahaemolyticus were the predominant species, with respective prevalence rates of 20.3% and 8.2%. Interestingly, all 59 isolates of V. parahaemolyticus were identified as non-pathogenic. They demonstrated proficiency in swimming and swarming motility and were capable of forming biofilms across a range of temperatures. In terms of antibiotic resistance, the V. parahaemolyticus isolates showed high resistance to ampicillin, intermediate resistance to cefuroxime and cefazolin, and were sensitive to the other antibiotics evaluated. The findings of this study may offer valuable insights and theoretical support for enhancing seafood safety measures in Qidong City.
Collapse
Affiliation(s)
- Qinglian Huang
- School of Medicine, Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Qinjun Wang
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Xianyi Ji
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Rongrong Chen
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Shenjie Ji
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Renfei Lu
- School of Medicine, Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
3
|
Wu X, Zhu Y, Yan W, Zhang P, Chen L. Pathogenic characteristics of the Vibrio parahaemolyticus which caused a gastroenteritis outbreak event in Huzhou. FEMS Microbiol Lett 2024; 371:fnad130. [PMID: 38066691 PMCID: PMC10776344 DOI: 10.1093/femsle/fnad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
The pathogenic characteristics of V. parahaemolyticus isolated from a gastroenteritis outbreak event in Deqing County of Huzhou City in 2022 were analyzed. Pathogen detection was performed on 30 anal swabs (26 patients, 1 chef and 3 waiters). The isolates of V. parahaemolyticus were analyzed by serum typing, pulsed field gel electrophoresis (PFGE) molecular typing, multiplex fluorescent PCR detection of tdh/trh virulence gene and drug sensitivity test. 15 patients were positive for V. parahaemolyticus, 1 patient was positive for V. parahaemolyticus and Enteroaggregative E. coli (EAEC), 1 patient was positive for EAEC, and the chef was positive for EAEC. The serotype test results of the 16 V. parahaemolyticus were 14 O4:KUT and 2 O10:K4. All samples were negative for other tested bacteria. All V. parahaemolyticus strains were positive for tdh genes and negative for trh gene. The 16 isolates were 100% resistant to ampicillin (AMP), and sensitive to the other12 antibiotics. From the results of serotype and PFGE, the V. parahaemolyticus strains with two serotypes are clustered into two branches according to their serotypes. The three EAEC strains were non-homologous. In conclusion, we detected V. parahaemolyticus and EAEC from an outbreak of gastroenteritis. And V. parahaemolyticus with two serotypes may be the cause of this event, according to the traceability results.
Collapse
Affiliation(s)
- Xiaofang Wu
- Huzhou Center for Disease Control and Prevention, Huzhou 313000, China
| | - Yongying Zhu
- Microbiology laboratory Deqing County Center for Disease Control and Prevention, Huzhou 313200, China
| | - Wei Yan
- Huzhou Center for Disease Control and Prevention, Huzhou 313000, China
| | - Peng Zhang
- Huzhou Center for Disease Control and Prevention, Huzhou 313000, China
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, Huzhou 313000, China
| |
Collapse
|
4
|
Li M, Xu H, Tian Y, Zhang Y, Jiao X, Gu D. Comparative genomic analysis reveals the potential transmission of Vibrio parahaemolyticus from freshwater food to humans. Food Microbiol 2023; 113:104277. [PMID: 37098434 DOI: 10.1016/j.fm.2023.104277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/15/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Vibrio parahaemolyticus is an increasingly important foodborne pathogen that cause acute gastroenteritis in humans. However, the prevalence and transmission of this pathogen in freshwater food remains unclear. This study aimed to determine the molecular characteristics and genetic relatedness of V. parahaemolyticus isolates obtained from freshwater food, seafood, environmental, and clinical samples. A total of 138 (46.6%) isolates were detected from 296 food and environmental samples, and 68 clinical isolates from patients. Notably, V. parahaemolyticus was more prevalent in freshwater food (56.7%, 85/150) than in seafood (38.8%, 49/137). Virulence phenotype analyses revealed that the high motility of isolates from freshwater food (40.0%) and clinical isolates (42.0%) was higher than that of isolates from seafood (12.2%), whereas the biofilm-forming capacity of freshwater food isolates (9.4%) was lower than that of seafood (22.4%) and clinical isolates (15.9%). Virulence genes analysis showed that 46.4% of the clinical isolates contained the tdh gene encoding thermostable direct hemolysin (TDH) and only two freshwater food isolates contained the trh gene encoding TDH-related hemolysin (TRH). Multilocus sequence typing (MLST) analysis divided the 206 isolates into 105 sequence types (STs), including 56 (53.3%) novel STs. ST2583, ST469, and ST453 have been isolated from freshwater food and clinical samples. Whole-genome sequence (WGS) analyses revealed that the 206 isolates were divided into five clusters. Cluster II contained isolates from freshwater food and clinical samples, whereas the other clusters contained isolates from seafood, freshwater food, and clinical samples. In addition, we observed that ST2516 had the same virulence pattern, with a close phylogenetic relationship to ST3. The increased prevalence and adaption of V. parahaemolyticus in freshwater food is a potential cause of clinical cases closely related to the consumption of V. parahaemolyticus contaminated freshwater food.
Collapse
|
5
|
Characterization of Vibrio parahaemolyticus isolated from stool specimens of diarrhea patients in Nantong, Jiangsu, China during 2018–2020. PLoS One 2022; 17:e0273700. [PMID: 36018831 PMCID: PMC9416985 DOI: 10.1371/journal.pone.0273700] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023] Open
Abstract
Vibrio parahaemolyticus is the leading cause of acute seafood-associated gastroenteritis worldwide. The aim of this study was to investigate the presence of virulence genes, biofilm formation, motor capacities and antimicrobial resistance profile of V. parahaemolyticus isolates isolated from clinical samples in Nantong during 2018–2020. Sixty-six V. parahaemolyticus strains isolated from stool specimens of diarrheal patients were examined. The PCR results showed that there were two tdh+trh+ isolates, four tdh-trh- isolates and sixty tdh+trh- isolates, accounting for 3.0%, 6.1% and 90.9%, respectively. All the tdh carrying isolates manifested the positive reactions for the Kanagawa phenomenon (KP) test. Most of the isolates harbored at least one of the specific DNA markers of ‘pandemic group’ strains, suggesting that the dominant isolates of V. parahaemolyticus in Nantong might belong to the new O3: K6 or its serovariants. All tdh+ isolates possessed the Vp-PAI genes, but no tdh-trh- isolates carried the T3SS2 genes. All isolates were biofilm producers and had relatively strong motor capacities. In addition, the V. parahaemolyticus isolates were resistant to ampicillin (98.5%), cefuroxime (75.6%), cefepime (66.7%), piperacillin (59.1%) and ampicillin/sulbactam (50.0%), but sensitive to ciprofloxacin (100.0%), levofloxacin (100.0%), trimethoprim-sulfamethoxazole (98.5%), gentamicin (98.5%), amikacin (97%), meropenem (71.2%), and ceftazidime (56.1%). Multidrug-resistant isolates in clinical might be related to the inappropriate use of antimicrobials in aquaculture.
Collapse
|
6
|
Kumarage PM, De Silva LADS, Heo GJ. Aquatic environments: A Potential Source of Antimicrobial-Resistant Vibrio spp. J Appl Microbiol 2022; 133:2267-2279. [PMID: 35797342 DOI: 10.1111/jam.15702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
Vibrio spp. are associated with water and seafood-related outbreaks worldwide. They are naturally present in aquatic environments such as seawater, brackish water and freshwater environments. These aquatic environments serve as the main reservoirs of antimicrobial-resistant genes and promote the transfer of antimicrobial-resistant bacterial species to aquatic animals and humans through the aquatic food chain. Vibrio spp. are known as etiological agents of cholera and non-cholera Vibrio infections in humans and animals. Antimicrobial-resistant Vibrio species have become a huge threat in regard to treating Vibrio infections in aquaculture and public health. Most of the Vibrio spp. possess resistance towards the commonly used antimicrobials, including β-lactams, aminoglycosides, tetracyclines, sulfonamides, quinolones and macrolides. The aim of this review is to summarize the antimicrobial resistance properties of Vibrio spp. isolated from aquatic environments to provide awareness about potential health risks related to Vibrio infections in aquaculture and public health.
Collapse
Affiliation(s)
- P M Kumarage
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - L A D S De Silva
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Gang-Joon Heo
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|