1
|
Hsieh EM, Dolezal AG. Nutrition, pesticide exposure, and virus infection interact to produce context-dependent effects in honey bees (Apis mellifera). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175125. [PMID: 39084359 DOI: 10.1016/j.scitotenv.2024.175125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Declines in pollinator health are frequently hypothesized to be the combined result of multiple interacting biotic and abiotic stressors; namely, nutritional limitations, pesticide exposure, and infection with pathogens and parasites. Despite this hypothesis, most studies examining stressor interactions have been constrained to two concurrent factors, limiting our understanding of multi-stressor dynamics. Using honey bees as a model, we addressed this gap by studying how variable diet, field-realistic levels of multiple pesticides, and virus infection interact to affect survival, infection intensity, and immune and detoxification gene expression. Although we found evidence that agrochemical exposure (a field-derived mixture of chlorpyrifos and two fungicides) can exacerbate infection and increase virus-induced mortality, this result was nutritionally-dependent, only occurring when bees were provided artificial pollen. Provisioning with naturally-collected polyfloral pollen inverted the effect, reducing virus-induced mortality and suggesting a hormetic response. To test if the response was pesticide specific, we repeated our experiment with a pyrethroid (lambda-cyhalothrin) and a neonicotinoid (thiamethoxam), finding variable results. Finally, to understand the underpinnings of these effects, we measured viral load and expression of important immune and detoxification genes. Together, our results show that multi-stressor interactions are complex and highly context-dependent, but have great potential to affect bee health and physiology.
Collapse
Affiliation(s)
- Edward M Hsieh
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin, Urbana, IL 61801-3795, USA.
| | - Adam G Dolezal
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin, Urbana, IL 61801-3795, USA
| |
Collapse
|
2
|
Kemmerling LR, Rutkoski CE, Evans SE, Helms JA, Cordova-Ortiz ES, Smith JD, Vázquez Custodio JA, Vizza C, Haddad NM. Prairie Strips and Lower Land Use Intensity Increase Biodiversity and Ecosystem Services. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.833170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Agricultural landscapes can be managed to protect biodiversity and maintain ecosystem services. One approach to achieve this is to restore native perennial vegetation within croplands. Where rowcrops have displaced prairie, as in the US Midwest, restoration of native perennial vegetation can align with crops in so called “prairie strips.” We tested the effect of prairie strips in addition to other management practices on a variety of taxa and on a suite of ecosystem services. To do so, we worked within a 33-year-old experiment that included treatments that varied methods of agricultural management across a gradient of land use intensity. In the two lowest intensity crop management treatments, we introduced prairie strips that occupied 5% of crop area. We addressed three questions: (1) What are the effects of newly established prairie strips on the spillover of biodiversity and ecosystem services into cropland? (2) How does time since prairie strip establishment affect biodiversity and ecosystem services? (3) What are the tradeoffs and synergies among biodiversity conservation, non-provisioning ecosystem services, and provisioning ecosystem services (crop yield) across a land use intensity gradient (which includes prairie strips)? Within prairie strip treatments, where sampling effort occurred within and at increasing distance from strips, dung beetle abundance, spider abundance and richness, active carbon, decomposition, and pollination decreased with distance from prairie strips, and this effect increased between the first and second year. Across the entire land use intensity gradient, treatments with prairie strips and reduced chemical inputs had higher butterfly abundance, spider abundance, and pollination services. In addition, soil organic carbon, butterfly richness, and spider richness increased with a decrease in land use intensity. Crop yield in one treatment with prairie strips was equal to that of the highest intensity management, even while including the area taken out of production. We found no effects of strips on ant biodiversity and greenhouse gas emissions (N2O and CH4). Our results show that, even in early establishment, prairie strips and lower land use intensity can contribute to the conservation of biodiversity and ecosystem services without a disproportionate loss of crop yield.
Collapse
|
3
|
Flater JS, Alt LM, Soupir M, Moorman TB, Howe A. Prairie strips' effect on transport of antimicrobial resistance indicators in poultry litter. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:260-271. [PMID: 35112354 DOI: 10.1002/jeq2.20333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Poultry litter is a valuable nutrient resource for agricultural production but is also a potential source for introducing antibiotic resistance genes (ARGs) and litter-associated bacteria (LAB) to the environment. Prairie strips have been demonstrated as an effective conservation practice to improve environmental quality in agroecosystems. This research aims to assess prairie strips' potential for reducing the transport of LAB and ARGs in runoff after litter application. Plot-scale rainfall simulations were performed using a replicated block design, with soil and surface runoff samples taken during the rainfall event. Microbial taxa and ARGs were characterized in the litter, soil, and water samples. In plots with litter application, LAB and ARGs were mainly detected in runoff, with very low detection in soils. Detection of ARGs in runoff, irrespective of strip installations, is consistent with previous observations of litter as a source of antimicrobial resistance (AMR) risks. The effectiveness of prairie strips to remove LAB and ARGs varied. In two of the three prairie strip plots, fewer AMR indicators were detected relative to control plots, suggesting that the prairie strips can potentially reduce these risks. In one plot, which was also associated with increased flow rate, we observed increased AMR indicators despite the installation of a prairie strip. Our observations highlight the need to prioritize understanding of soil properties even within the same site. Although we show that prairie strips can potentially reduce AMR risks, further research is needed to better understand the influence of rainfall timing, soil, and litter characteristics.
Collapse
Affiliation(s)
- Jared S Flater
- Dep. of Agriculture and Biosystems Engineering, Iowa State Univ., Elings Hall, 605 Bissell Rd, Ames, IA, 50011, USA
| | - Laura M Alt
- Dep. of Agriculture and Biosystems Engineering, Iowa State Univ., Elings Hall, 605 Bissell Rd, Ames, IA, 50011, USA
| | - Michelle Soupir
- Dep. of Agriculture and Biosystems Engineering, Iowa State Univ., Elings Hall, 605 Bissell Rd, Ames, IA, 50011, USA
| | - Thomas B Moorman
- USDA-ARS, National Laboratory for Agriculture and the Environment, 1015 N University Blvd., Ames, IA, 50011, USA
| | - Adina Howe
- Dep. of Agriculture and Biosystems Engineering, Iowa State Univ., Elings Hall, 605 Bissell Rd, Ames, IA, 50011, USA
| |
Collapse
|
4
|
Zhang G, St. Clair AL, Dolezal AG, Toth AL, O’Neal ME. Can Native Plants Mitigate Climate-related Forage Dearth for Honey Bees (Hymenoptera: Apidae)? JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1-9. [PMID: 34850022 PMCID: PMC8827321 DOI: 10.1093/jee/toab202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Indexed: 06/02/2023]
Abstract
Extreme weather events, like high temperatures and droughts, are predicted to become common with climate change, and may negatively impact plant growth. How honey bees (Apis mellifera L. [Hymenoptera: Apidae]) will respond to this challenge is unclear, especially when collecting pollen, their primary source of protein, lipids, and micro-nutrients. We explored this response with a data set from multiple research projects that measured pollen collected by honey bees during 2015-2017 in which above-average temperatures and a drought occurred in 2017. We summarized the abundance and diversity of pollen collected from July to September in replicated apiaries kept at commercial soybean and corn farms in Iowa, in the Midwestern USA. The most commonly collected pollen was from clover (Trifolium spp. [Fabales: Fabaceae]), which dramatically declined in absolute and relative abundance in July 2017 during a period of high temperatures and drought. Due to an apparent lack of clover, honey bees switched to the more drought-tolerant native species (e.g., Chamaecrista fasciculata [Michx.] Greene [Fabales: Fabaceae], Dalea purpurea Vent. [Fabales: Fabaceae], Solidago spp. [Asterales: Asteraceae]), and several species of Asteraceae. This was especially noticeable in August 2017 when C. fasciculata dominated (87%) and clover disappeared from bee-collected pollen. We discuss the potential implications of climate-induced forage dearth on honey bee nutritional health. We also compare these results to a growing body of literature on the use of native, perennial flowering plants found in Midwestern prairies for the conservation of beneficial insects. We discuss the potential for drought resistant-native plants to potentially promote resilience to climate change for the non-native, managed honey bee colonies in the United States.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
- Department of Entomology, Washington State University, Pullman, WA 99163, USA
| | - Ashley L St. Clair
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Adam G Dolezal
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Amy L Toth
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Matthew E O’Neal
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
5
|
Dolezal AG, Torres J, O’Neal ME. Can Solar Energy Fuel Pollinator Conservation? ENVIRONMENTAL ENTOMOLOGY 2021; 50:757-761. [PMID: 34081129 PMCID: PMC8359815 DOI: 10.1093/ee/nvab041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 06/12/2023]
Abstract
As the expansion of solar power spreads through much of the United States, members of the solar industry are working to change how solar energy facilities are designed and presented to the public. This includes the addition of habitat to conserve pollinators. We highlight and discuss ongoing efforts to couple solar energy production with pollinator conservation, noting recent legal definitions of these practices. We summarize key studies from the field of ecology, bee conservation, and our experience working with members of the solar industry (e.g., contribution to legislation defining solar pollinator habitat). Several recently published studies that employed similar practices to those proposed for solar developments reveal features that should be replicated and encouraged by the industry. These results suggest the addition of native, perennial flowering vegetation will promote wild bee conservation and more sustainable honey beekeeping. Going forward, there is a need for oversight and future research to avoid the misapplication of this promising but as of yet untested practice of coupling solar energy production with pollinator-friendly habitat. We conclude with best practices for the implementation of these additions to realize conservation and agricultural benefits.
Collapse
Affiliation(s)
- Adam G Dolezal
- University of Illinois at Urbana-Champaign, 320 Morrill Hall, 505 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Jacob Torres
- University of Illinois at Urbana-Champaign, 320 Morrill Hall, 505 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Matthew E O’Neal
- Iowa State University, 2003 ATRB, 2213 Pammel Drive, Ames, IA 50011, USA
| |
Collapse
|