1
|
Liu X, Gao Y, Fu L, Li X, Ma J. Cutaneous Melanoma and 486 Human Blood Metabolites: A Mendelian Randomization Study. Aesthetic Plast Surg 2024; 48:2545-2552. [PMID: 38438761 DOI: 10.1007/s00266-024-03873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Cutaneous melanoma (CM) has long been recognized as a lethal form of cancer. Despite persistent research endeavors, the precise underlying pathological mechanisms remain largely unclear, and the optimal treatment for this patient population remains undetermined. OBJECTIVES This study aims to examine the causal associations between CM and 486 metabolites. METHODS A two-sample Mendelian randomization (MR) analysis was conducted to ascertain the causal relationship between blood metabolites and CM. The causality analysis involved the inverse variance weighted (IVW) method, followed by the MR-Egger and weighted median (WM) methods. To increase the robustness of our findings, several sensitivity analyses, including the MR-Egger intercept, Cochran's Q test, and MR-pleiotropy residual sum and outlier (MR-PRESSO), were performed. The robustness of our results was further validated in independent outcome samples followed by a meta-analysis. Additionally, a metabolic pathway analysis was carried out. RESULTS The two-sample MR analysis yielded a total of 27 metabolites as potential causal metabolites. After incorporating the outcomes of the sensitivity analyses, seven causal metabolites remained. Palmitoylcarnitine (OR 0.9903 95% CI 0.9848-0.9958, p = 0.0005) emerged as the sole metabolite with a significant causality after Bonferroni correction. Furthermore, the reverse MR analysis provided no evidence of reverse causality from CM to the identified metabolites. CONCLUSIONS This study suggested a causal relationship between seven human blood metabolites and the development of CM, thereby offering novel insights into the underlying mechanisms involved. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Xuanchen Liu
- Department of Facial and Cervical Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Gao
- Department of Facial and Cervical Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Fu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Li
- Department of Facial and Cervical Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jiguang Ma
- Department of Facial and Cervical Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Jäger J, Vahav I, Thon M, Waaijman T, Spanhaak B, de Kok M, Bhogal RK, Gibbs S, Koning JJ. Reconstructed Human Skin with Hypodermis Shows Essential Role of Adipose Tissue in Skin Metabolism. Tissue Eng Regen Med 2024; 21:499-511. [PMID: 38367122 PMCID: PMC10987437 DOI: 10.1007/s13770-023-00621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Dysregulation of skin metabolism is associated with a plethora of diseases such as psoriasis and dermatitis. Until now, reconstructed human skin (RhS) models lack the metabolic potential of native human skin, thereby limiting their relevance to study human healthy and diseased skin. We aimed to determine whether incorporation of an adipocyte-containing hypodermis into RhS improves its metabolic potential and to identify major metabolic pathways up-regulated in adipose-RhS. METHODS Primary human keratinocytes, fibroblasts and differentiated adipose-derived stromal cells were co-cultured in a collagen/fibrin scaffold to create an adipose-RhS. The model was extensively characterized structurally in two- and three-dimensions, by cytokine secretion and RNA-sequencing for metabolic enzyme expression. RESULTS Adipose-RhS showed increased secretion of adipokines. Both RhS and adipose-RhS expressed 29 of 35 metabolic genes expressed in ex vivo native human skin. Addition of the adipose layer resulted in up-regulation of 286 genes in the dermal-adipose fraction of which 7 were involved in phase I (CYP19A1, CYP4F22, CYP3A5, ALDH3B2, EPHX3) and phase II (SULT2B1, GPX3) metabolism. Vitamin A, D and carotenoid metabolic pathways were enriched. Additionally, pro-inflammatory (IL-1β, IL-18, IL-23, IL-33, IFN-α2, TNF-α) and anti-inflammatory cytokine (IL-10, IL-12p70) secretion was reduced in adipose-RhS. CONCLUSIONS Adipose-RhS mimics healthy native human skin more closely than traditional RhS since it has a less inflamed phenotype and a higher metabolic activity, indicating the contribution of adipocytes to tissue homeostasis. Therefore it is better suited to study onset of skin diseases and the effect of xenobiotics.
Collapse
Affiliation(s)
- Jonas Jäger
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Irit Vahav
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function & Regeneration, Amsterdam, The Netherlands
| | - Maria Thon
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Taco Waaijman
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Bas Spanhaak
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michael de Kok
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | | | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Nazar NSBM, Ramanathan A, Ghani WMN, Rokhani FB, Jacob PS, Sabri NEB, Hassan MS, Kadir K, Dharmarajan L. Salivary metabolomics in oral potentially malignant disorders and oral cancer patients-a systematic review with meta-analysis. Clin Oral Investig 2024; 28:98. [PMID: 38225483 DOI: 10.1007/s00784-023-05481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVES The aim of this systematic review and meta-analysis is to assess the diagnostic potential of salivary metabolomics in the detection of oral potentially malignant disorders (OPMDs) and oral cancer (OC). MATERIALS AND METHODS A systematic review was performed in accordance with the 3rd edition of the Centre for Reviews and Dissemination (CRD) and Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Electronic searches for articles were carried out in the PubMed, Web of Science, and Scopus databases. The quality assessment of the included studies was evaluated using the Newcastle-Ottawa Quality Assessment Scale (NOS) and the new version of the QUADOMICS tool. Meta-analysis was conducted whenever possible. The effect size was presented using the Forest plot, whereas the presence of publication bias was examined through Begg's funnel plot. RESULTS A total of nine studies were included in the systematic review. The metabolite profiling was heterogeneous across all the studies. The expression of several salivary metabolites was found to be significantly altered in OPMDs and OCs as compared to healthy controls. Meta-analysis was able to be conducted only for N-acetylglucosamine. There was no significant difference (SMD = 0.15; 95% CI - 0.25-0.56) in the level of N-acetylglucosamine between OPMDs, OC, and the control group. CONCLUSION Evidence for N-acetylglucosamine as a salivary biomarker for oral cancer is lacking. Although several salivary metabolites show changes between healthy, OPMDs, and OC, their diagnostic potential cannot be assessed in this review due to a lack of data. Therefore, further high-quality studies with detailed analysis and reporting are required to establish the diagnostic potential of the salivary metabolites in OPMDs and OC. CLINICAL RELEVANCE While some salivary metabolites exhibit significant changes in oral potentially malignant disorders (OPMDs) and oral cancer (OC) compared to healthy controls, the current evidence, especially for N-acetylglucosamine, is inadequate to confirm their reliability as diagnostic biomarkers. Additional high-quality studies are needed for a more conclusive assessment of salivary metabolites in oral disease diagnosis.
Collapse
Affiliation(s)
- Nur Syahirah Binti Mohd Nazar
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Oral and Maxillofacial Surgery, Medicine and Pathology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Anand Ramanathan
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia.
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Wan Maria Nabillah Ghani
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Faezah Binti Rokhani
- Department of Oral and Maxillofacial Surgery, Medicine and Pathology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Pulikkotil Shaju Jacob
- Division of Clinical Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Nurul Elma Binti Sabri
- Department of Agrotechnology and Bioscience, Malaysian Nuclear Agency, Bangi, Selangor, Malaysia
| | - Mohd Sukri Hassan
- Faculty of Science and Technology, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Kathreena Kadir
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
4
|
Chen J, Liu J, Cao D. Urine metabolomics for assessing fertility-sparing treatment efficacy in endometrial cancer: a non-invasive approach using ultra-performance liquid chromatography mass spectrometry. BMC Womens Health 2023; 23:583. [PMID: 37940929 PMCID: PMC10634093 DOI: 10.1186/s12905-023-02730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVE This study aimed to reveal the urine metabolic change of endometrial cancer (EC) patients during fertility-sparing treatment and establish non-invasive predictive models to identify patients with complete remission (CR). METHOD This study enrolled 20 EC patients prior to treatment (PT) and 22 patients with CR, aged 25-40 years. Eligibility criteria consisted of stage IA high-grade EC, lesions confined to endometrium, normal hepatic and renal function, normal urine test, no contraindication for fertility-sparing treatment and no prior therapy. Urine samples were analyzed using ultraperformance liquid chromatography mass spectrometry (UPLC-MS), a technique chosen for its high sensitivity and resolution, allows for rapid, accurate identification and quantification of metabolites, providing a comprehensive metabolic profile and facilitating the discovery of potential biomarkers. Analytical techniques were employed to determine distinct metabolites and altered metabolic pathways. The statistical analyses were performed using univariate and multivariate analyses, logistic regression and receiver operating characteristic (ROC) curves to discover and validate the potential biomarker models. RESULTS A total of 108 different urine metabolomes were identified between CR and PT groups. These metabolites were enriched in ascorbate and aldarate metabolism, one carbon pool by folate, and some amino acid metabolisms pathways. A panel consisting of Baicalin, 5beta-1,3,7 (11)-Eudesmatrien-8-one, Indolylacryloylglycine, Edulitine, and Physapubenolide were selected as biomarkers, which demonstrated the best predictive ability with the AUC values of 0.982/0.851 in training/10-fold-cross-validation group, achieving a sensitivity of 0.975 and specificity of 0.967, respectively. CONCLUSION The urine metabolic analysis revealed the metabolic changes in EC patients during the fertility-sparing treatment. The predictive biomarkers present great potential diagnostic value in fertility-sparing treatments for EC patients, offering a less invasive means of monitoring treatment efficacy. Further research should explore the mechanistic underpinnings of these metabolic changes and validate the biomarker panel in larger, diverse populations due to the small sample size and single-institution nature of our study.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, National Clinical Research Center for Obstetric & Gynecologic Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jiale Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, National Clinical Research Center for Obstetric & Gynecologic Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
5
|
Azimi A, Fernandez-Peñas P. Molecular Classifiers in Skin Cancers: Challenges and Promises. Cancers (Basel) 2023; 15:4463. [PMID: 37760432 PMCID: PMC10526380 DOI: 10.3390/cancers15184463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Skin cancers are common and heterogenous malignancies affecting up to two in three Australians before age 70. Despite recent developments in diagnosis and therapeutic strategies, the mortality rate and costs associated with managing patients with skin cancers remain high. The lack of well-defined clinical and histopathological features makes their diagnosis and classification difficult in some cases and the prognostication difficult in most skin cancers. Recent advancements in large-scale "omics" studies, including genomics, transcriptomics, proteomics, metabolomics and imaging-omics, have provided invaluable information about the molecular and visual landscape of skin cancers. On many occasions, it has refined tumor classification and has improved prognostication and therapeutic stratification, leading to improved patient outcomes. Therefore, this paper reviews the recent advancements in omics approaches and appraises their limitations and potential for better classification and stratification of skin cancers.
Collapse
Affiliation(s)
- Ali Azimi
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Dermatology, Westmead Hospital, Westmead, NSW 2145, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Pablo Fernandez-Peñas
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Dermatology, Westmead Hospital, Westmead, NSW 2145, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
6
|
Skin Cancer Metabolic Profile Assessed by Different Analytical Platforms. Int J Mol Sci 2023; 24:ijms24021604. [PMID: 36675128 PMCID: PMC9866771 DOI: 10.3390/ijms24021604] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
Skin cancer, including malignant melanoma (MM) and keratinocyte carcinoma (KC), historically named non-melanoma skin cancers (NMSC), represents the most common type of cancer among the white skin population. Despite decades of clinical research, the incidence rate of melanoma is increasing globally. Therefore, a better understanding of disease pathogenesis and resistance mechanisms is considered vital to accomplish early diagnosis and satisfactory control. The "Omics" field has recently gained attention, as it can help in identifying and exploring metabolites and metabolic pathways that assist cancer cells in proliferation, which can be further utilized to improve the diagnosis and treatment of skin cancer. Although skin tissues contain diverse metabolic enzymes, it remains challenging to fully characterize these metabolites. Metabolomics is a powerful omics technique that allows us to measure and compare a vast array of metabolites in a biological sample. This technology enables us to study the dermal metabolic effects and get a clear explanation of the pathogenesis of skin diseases. The purpose of this literature review is to illustrate how metabolomics technology can be used to evaluate the metabolic profile of human skin cancer, using a variety of analytical platforms including gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR). Data collection has not been based on any analytical method.
Collapse
|
7
|
Xu B, Gao W, Xu T, Liu C, Wu D, Tang W. A UPLC Q-Exactive Orbitrap Mass Spectrometry-Based Metabolomic Study of Serum and Tumor Tissue in Patients with Papillary Thyroid Cancer. TOXICS 2022; 11:44. [PMID: 36668770 PMCID: PMC9863332 DOI: 10.3390/toxics11010044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE To find the metabolomic characteristics of tumor or para-tumor tissues, and the differences in serums from papillary thyroid cancer (PTC) patients with or without lymph node metastasis. METHODS We collected serums of PTC patients with/without lymph node metastasis (SN1/SN0), tumor and adjacent tumor tissues of PTC patients with lymph node metastasis (TN1 and PN1), and without lymph node metastasis (TN0 and PN0). Metabolite detection was performed by ultra-high performance liquid chromatography combined with Q-Exactive orbitrap mass spectrometry (UPLC Q-Exactive). RESULTS There were 31, 15, differential metabolites in the comparisons of TN1 and PN1, TN0 and PN0, respectively. Seven uniquely increased metabolites and fourteen uniquely decreased metabolites appeared in the lymph node metastasis (TN1 and PN1) group. Meanwhile, the results indicated that four pathways were co-owned pathways in two comparisons (TN1 and PN1, TN0 and PN0), and four unique pathways presented in the lymph node metastasis (TN1 and PN1) group. CONCLUSIONS Common or differential metabolites and metabolic pathways were detected in the lymph node metastasis and non-metastatic group, which might provide novel ways for the diagnosis and treatment of PTC.
Collapse
Affiliation(s)
- Bo Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wei Gao
- Department of Endocrinology, Nanjing Medical University Affiliated Geriatric Hospital, Nanjing 210024, China
| | - Ting Xu
- Department of Endocrinology, Nanjing Medical University Affiliated Geriatric Hospital, Nanjing 210024, China
| | - Cuiping Liu
- Bank of Biological Samples, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Dan Wu
- Department of Endocrinology, Nanjing Medical University Affiliated Geriatric Hospital, Nanjing 210024, China
| | - Wei Tang
- Department of Endocrinology, Nanjing Medical University Affiliated Geriatric Hospital, Nanjing 210024, China
| |
Collapse
|
8
|
Yang Y, Dai D, Jin W, Huang Y, Zhang Y, Chen Y, Wang W, Lin W, Chen X, Zhang J, Wang H, Zhang H, Teng L. Microbiota and metabolites alterations in proximal and distal gastric cancer patients. J Transl Med 2022; 20:439. [PMID: 36180919 PMCID: PMC9524040 DOI: 10.1186/s12967-022-03650-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/18/2022] [Indexed: 12/24/2022] Open
Abstract
Background Globally, gastric cancer is the third most common cancer and the third leading cause of cancer death. Proximal and distal gastric cancers have distinct clinical and biological behaviors. The microbial composition and metabolic differences in proximal and distal gastric cancers have not been fully studied and discussed. Methods In this study, the gastric microbiome of 13 proximal gastric cancer tissues, 16 distal gastric cancer tissues, and their matched non-tumor tissues were characterized using 16S rRNA amplicon sequencing. Additionally, 10 proximal gastric cancer tissues, 11 distal gastric cancer tissues, and their matched non-tumor tissues were assessed by untargeted metabolomics. Results There was no significant difference in microbial diversity and richness between the proximal and distal gastric cancer tissues. At the genus level, the abundance of Rikenellaceae_RC9_gut_group, Porphyromonas, Catonella, Proteus, Oribacterium, and Moraxella were significantly increased in Proximal T, whereas that of Methylobacterium_Methylorubrum was significantly increased in Distal T. The untargeted metabolomics analysis revealed 30 discriminative metabolites between Distal T and Distal N. In contrast, there were only 4 discriminative metabolites between Proximal T and Proximal N. In distal gastric cancer, different metabolites were scattered through multiple pathway, including the sphingolipid signaling pathway, arginine biosynthesis, protein digestion and absorption, alanine, aspartate and, glutamate metabolism, etc.In proximal gastric cancer, differential microbial metabolites were mainly related to hormone metabolism. Conclusion Methylobacterium-Methylorubrum was significantly increased in Distal T, positively correlated with cancer-promoting metabolites, and negatively correlated with cancer-inhibiting metabolites. Rikenellaceae_RC_gut_group was significantly increased in Proximal T and positively correlated with cancer-promoting metabolites. Further studies regarding the functions of the above-mentioned microorganisms and metabolites were warranted as the results may reveal the different mechanisms underlying the occurrence and development of proximal and distal gastric cancers and provide a basis for future treatments. Importance First, the differences in microbial composition and metabolites between the proximal and distal gastric cancers were described; then, the correlation between microbiota and metabolites was preliminarily discussed. These microbes and metabolites deserve further investigations as they may reveal the different mechanisms involved in the occurrence and development of proximal and distal gastric cancers and provide a basis for future treatments. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03650-x.
Collapse
Affiliation(s)
- Yan Yang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Daofeng Dai
- Jiangxi Otorhinolaryngology Head and Neck Surgery Institute, Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wen Jin
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yingying Huang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yingzi Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wankun Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wu Lin
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiangliu Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Haibin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
9
|
Zarei M, Hajihassani O, Hue JJ, Graor HJ, Loftus AW, Rathore M, Vaziri-Gohar A, Asara JM, Winter JM, Rothermel LD. Wild-type IDH1 inhibition enhances chemotherapy response in melanoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:283. [PMID: 36153582 PMCID: PMC9509573 DOI: 10.1186/s13046-022-02489-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/06/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Alternative treatment strategies in melanoma beyond immunotherapy and mutation-targeted therapy are urgently needed. Wild-type isocitrate dehydrogenase 1 (wtIDH1) has recently been implicated as a metabolic dependency in cancer. The enzyme protects cancer cells under metabolic stress, including nutrient limited conditions in the tumor microenvironment. Specifically, IDH1 generates NADPH to maintain redox homeostasis and produces α-ketoglutarate to support mitochondrial function through anaplerosis. Herein, the role of wtIDH1 in melanoma is further explored. METHODS The expression of wtIDH1 was determined by qRT-PCR, and Western blot in melanoma cell lines and the effect of wtIDH1 on metabolic reprogramming in melanoma was interrogated by LC-MS. The impact of wtIDH1 inhibition alone and in combination with chemotherapy was determined in cell culture and mouse melanoma models. RESULTS Melanoma patients express higher levels of the wtIDH1 enzyme compared to normal skin tissue, and elevated wtIDH1 expression portends poor patient survival. Knockdown of IDH1 by RNA interference inhibited cell proliferation and migration under low nutrient levels. Suppression of IDH1 expression in melanoma also decreased NADPH and glutathione levels, resulting in increased reactive oxygen species. An FDA-approved inhibitor of mutant IDH1, ivosidenib (AG-120), exhibited potent anti-wtIDH1 properties under low magnesium and nutrient levels, reflective of the tumor microenvironment in natura. Thus, similar findings were replicated in murine models of melanoma. In light of the impact of wtIDH1 inhibition on oxidative stress, enzyme blockade was synergistic with conventional anti-melanoma chemotherapy in pre-clinical models. CONCLUSIONS These results demonstrate the clinical potential of wtIDH1 inhibition as a novel and readily available combination treatment strategy for patients with advanced and refractory melanoma. Schematic shows increased wild-type IDH1 expression and activity as an adaptive response to metabolic stress induced by chemotherapy.
Collapse
Affiliation(s)
- Mehrdad Zarei
- grid.67105.350000 0001 2164 3847Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH USA ,grid.443867.a0000 0000 9149 4843Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106 USA
| | - Omid Hajihassani
- grid.67105.350000 0001 2164 3847Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH USA
| | - Jonathan J. Hue
- grid.443867.a0000 0000 9149 4843Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106 USA
| | - Hallie J. Graor
- grid.67105.350000 0001 2164 3847Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH USA
| | - Alexander W. Loftus
- grid.443867.a0000 0000 9149 4843Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106 USA
| | - Moeez Rathore
- grid.67105.350000 0001 2164 3847Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH USA
| | - Ali Vaziri-Gohar
- grid.67105.350000 0001 2164 3847Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH USA
| | - John M. Asara
- grid.239395.70000 0000 9011 8547Division of Signal Transduction and Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Jordan M. Winter
- grid.67105.350000 0001 2164 3847Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH USA ,grid.443867.a0000 0000 9149 4843Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106 USA
| | - Luke D. Rothermel
- grid.67105.350000 0001 2164 3847Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH USA ,grid.443867.a0000 0000 9149 4843Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
10
|
Paganelli A, Righi V, Tarentini E, Magnoni C. Current Knowledge in Skin Metabolomics: Updates from Literature Review. Int J Mol Sci 2022; 23:ijms23158776. [PMID: 35955911 PMCID: PMC9369191 DOI: 10.3390/ijms23158776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022] Open
Abstract
Metabolomic profiling is an emerging field consisting of the measurement of metabolites in a biological system. Since metabolites can vary in relation to different stimuli, specific metabolic patterns can be closely related to a pathological process. In the dermatological setting, skin metabolomics can provide useful biomarkers for the diagnosis, prognosis, and therapy of cutaneous disorders. The main goal of the present review is to present a comprehensive overview of the published studies in skin metabolomics. A search for journal articles focused on skin metabolomics was conducted on the MEDLINE, EMBASE, Cochrane, and Scopus electronic databases. Only research articles with electronically available English full text were taken into consideration. Studies specifically focused on cutaneous microbiomes were also excluded from the present search. A total of 97 papers matched all the research criteria and were therefore considered for the present work. Most of the publications were focused on inflammatory dermatoses and immune-mediated cutaneous disorders. Skin oncology also turned out to be a relevant field in metabolomic research. Only a few papers were focused on infectious diseases and rarer genetic disorders. All the major metabolomic alterations published so far in the dermatological setting are described extensively in this review.
Collapse
Affiliation(s)
- Alessia Paganelli
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Regenerative and Oncological Dermatological Surgery Unit, Modena University Hospital, 41124 Modena, Italy
- Correspondence: ; Tel.: +39-059-4222347
| | - Valeria Righi
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Elisabetta Tarentini
- Servizio Formazione, Ricerca e Innovazione, Modena University Hospital, 41124 Modena, Italy
| | - Cristina Magnoni
- Regenerative and Oncological Dermatological Surgery Unit, Modena University Hospital, 41124 Modena, Italy
| |
Collapse
|
11
|
1H-NMR-based metabolomics of skin squamous cell carcinoma and peri-tumoral region tissues. J Pharm Biomed Anal 2022; 212:114643. [DOI: 10.1016/j.jpba.2022.114643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022]
|
12
|
Shi S, Fan Z, Liu Y, Huang C, Zhou J. Integration Analysis of m6A Related Genes in Skin Cutaneous Melanoma and the Biological Function Research of the SPRR1B. Front Oncol 2021; 11:729045. [PMID: 34737950 PMCID: PMC8560968 DOI: 10.3389/fonc.2021.729045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/27/2021] [Indexed: 01/22/2023] Open
Abstract
Melanoma has gradually entered the public view because of its high morbidity and rising prevalence rate, which is a serious threat to human life and health. Recently, N6-methyladenine (m6A) modification has been increasingly confirmed as a potential role in the development of tumogenesis. The purpose of this study is to explore the role and function of m6a-related regulators in the development of melanoma disease at the molecular, cellular and clinical levels through bioinformatics and traditional experiments. We screened and validated differential expression genes (DEGs) in m6A regulators via the GEO, GTEx, TCGA database. The biological processes and signaling pathway involved by DEGs were improved by constructing bioinformational methods such as PPI, GO enrichment, KEGG enrichment, GSEA enrichment, and immune infiltration analysis. And then, we explored the biological function of the key gene, SPRR1B, through cell invasion, migration, infiltration, and tissue chips. The gene IGF2BP3 which was differentially expressed in m6A regulatory factor gene was screened. The results of the enrichment analysis are significantly enriched in the biological processes and pathways of the skin barrier, epidermal differentiation, cytoskeleton, lymphocyte migration and other pathways, pointing to the direction of tumor immunity and tumor metastasis. Tumor immune-related genes YTHDC1, YTHDC2 and ALKBH5 were found. Knock SPRR1B reduction group had a significantly lower invasive ability, the ability to migrate. Nomogram prediction model shows that SPRR1B increased, expressing a worse prognosis. For this purpose, the relationship between m6A regulatory factor and melanoma progression was explored. At the same time, it was found that the abnormal up-regulated expression of SPRR1B before metastasis would lead to poor prognosis of melanoma. SPRR1B promotes the proliferation, invasion and migration of human melanoma cells.
Collapse
Affiliation(s)
- Shupeng Shi
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhihua Fan
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Yang Liu
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chengyu Huang
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianda Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Cardoso R, Valente R, Souza da Costa CH, da S. Gonçalves Vianez JL, Santana da Costa K, de Molfetta FA, Nahum Alves C. Analysis of Kojic Acid Derivatives as Competitive Inhibitors of Tyrosinase: A Molecular Modeling Approach. Molecules 2021; 26:2875. [PMID: 34066283 PMCID: PMC8152073 DOI: 10.3390/molecules26102875] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Tyrosinases belong to the functional copper-containing proteins family, and their structure contains two copper atoms, in the active site, which are coordinated by three histidine residues. The biosynthesis of melanin in melanocytes has two stages depending on the actions of the natural substrates L-DOPA and L-tyrosine. The dysregulation of tyrosinase is involved in skin cancer initiation. In the present study, using molecular modeling tools, we analyzed the inhibition activity of tyrosinase activity using kojic acid (KA) derivatives designed from aromatic aldehydes and malononitrile. All derivatives showed conformational affinity to the enzyme active site, and a favorable distance to chelate the copper ion, which is essential for enzyme function. Molecular dynamics simulations revealed that the derivatives formed promising complexes, presenting stable conformations with deviations between 0.2 and 0.35 Å. In addition, the investigated KA derivatives showed favorable binding free energies. The most stable KA derivatives showed the following binding free energies: -17.65 kcal mol-1 (D6), -18.07 kcal mol-1 (D2), -18.13 (D5) kcal mol-1, and -10.31 kcal mol-1 (D4). Our results suggest that these derivatives could be potent competitive inhibitors of the natural substrates of L-DOPA (-12.84 kcal mol-1) and L-tyrosine (-9.04 kcal mol-1) in melanogenesis.
Collapse
Affiliation(s)
- Richelly Cardoso
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará–UFPA, Guamá, Belém-PA 66075-10, Brazil; (R.C.); (F.A.d.M.)
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará–UFPA, Guamá, Belém-PA 66075-10, Brazil;
| | - Renan Valente
- Laboratório de Sistemas Moleculares Complexos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará–UFPA, Guamá, Belém-PA 66075-10, Brazil;
| | - Clauber Henrique Souza da Costa
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará–UFPA, Guamá, Belém-PA 66075-10, Brazil;
| | | | - Kauê Santana da Costa
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará–UFPA, Guamá, Belém-PA 66075-10, Brazil;
- Universidade Federal do Oeste do Pará, Instituto de Biodiversidade, Santarém-PA 68035-110, Brazil
| | - Fábio Alberto de Molfetta
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará–UFPA, Guamá, Belém-PA 66075-10, Brazil; (R.C.); (F.A.d.M.)
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará–UFPA, Guamá, Belém-PA 66075-10, Brazil;
| |
Collapse
|