1
|
Gürkan M, Ertürk Gürkan S, Künili İE, Acar S, Özel OT, Düzgüneş ZD, Türe M. Evaluation of the health of Mediterranean mussels (Mytilus galloprovincialis Lamarck, 1819) distributed in the Çanakkale strait, Turkey. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106492. [PMID: 38598959 DOI: 10.1016/j.marenvres.2024.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
The observation of mortality in Mediterranean mussels (Mytilus galloprovincialis) distributed in the Çanakkale Strait in recent years was influential in developing the research question for this study. In this study, the presence of bacteria (Vibrio spp.) and parasites (Marteilia spp. and Haplosporidium spp.) in mussels collected from Kumkale, Kepez, and Umurbey stations in the Çanakkale Strait was investigated seasonally. Microbiological findings, histopathology, oxidative stress enzymes and their gene expressions, lipid peroxidation, lysosomal membrane stability, and changes in haemolymph were examined. In summer samples, both the defence system and the extent of damage were higher in gill tissue. In winter samples, enzyme activities and lipid peroxidation were found to be predominantly higher in digestive gland tissues. Histological examinations and Hemacolor staining revealed the presence of protozoan cysts, and for bacterial examination, molecular analysis performed after culturing revealed the presence of 7 Vibrio species. While the total numbers of heterotrophic bacteria detected in all samples were at acceptable levels, the predominance of Vibrio spp. numbers among the total heterotrophic bacteria detected in almost all samples were noteworthy. The total hemocyte count was calculated as 5.810(4)±0.58 (cells/mm3) in winter and 7.210(4)±1.03 (cells/mm3) in summer. These factors are considered to be possible causes of mussel mortality.
Collapse
Affiliation(s)
- Mert Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkiye
| | - Selin Ertürk Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkiye.
| | - İbrahim Ender Künili
- Çanakkale Onsekiz Mart University, Faculty of Marine Sciences and Technology, Department of Fishing and Fish Processing Technology, Çanakkale, Turkiye
| | - Seçil Acar
- Çanakkale Onsekiz Mart University, Faculty of Marine Sciences and Technology, Department of Marine Sciences and Limnology, Çanakkale, Turkiye
| | - Osman Tolga Özel
- Central Fisheries Research Institute, Department of Aquaculture, Trabzon, Turkiye
| | - Zehra Duygu Düzgüneş
- Central Fisheries Research Institute, Department of Breeding and Genetics, Trabzon, Turkiye
| | - Mustafa Türe
- Central Fisheries Research Institute, Department of Fisheries Health, Trabzon, Turkiye
| |
Collapse
|
2
|
Rankins DR, Herrera MJ, Christensen MP, Chen A, Hood NZ, Heras J, German DP. When digestive physiology doesn't match "diet": Lumpenus sagitta (Stichaeidae) is an "omnivore" with a carnivorous gut. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111508. [PMID: 37625480 DOI: 10.1016/j.cbpa.2023.111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
What an animal ingests and what it digests can be different. Thus, we examined the nutritional physiology of Lumpenus sagitta, a member of the family Stichaeidae, to better understand whether it could digest algal components like its better studied algivorous relatives. Although L. sagitta ingests considerable algal content, we found little evidence of algal digestion. This fish species has a short gut that doesn't show positive allometry with body size, low amylolytic activity that actually decreases as the fish grow, no ontogenetic changes in digestive enzyme gene expression, elevated N-acetyl-glucosaminidase activity (indicative of chitin breakdown), and an enteric microbial community that is consistent with carnivory and differs from members of its family that consume and digest algae. Hence, we are left concluding that L. sagitta is not capable of digesting the algae it consumes, and instead, are likely targeting epibionts on the algae itself, and other invertebrates consumed with the algae. Our study expands the coverage of dietary and digestive information for the family Stichaeidae, which is becoming a model for fish digestive physiology and genomics, and shows the power of moving beyond gut content analyses to better understand what an animal can actually digest and use metabolically.
Collapse
Affiliation(s)
- Daniel R Rankins
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA.
| | - Michelle J Herrera
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA
| | - Michelle P Christensen
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA
| | - Alisa Chen
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA
| | - Newton Z Hood
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA
| | - Joseph Heras
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA
| | - Donovan P German
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA
| |
Collapse
|
3
|
Yang Y, Zhang F, Chen X, Li H, Jiao N, Zhang R. Insignificant Response of Bacterioplankton Community to Elevated pCO 2 During a Short-Term Microcosm Experiment in a Subtropical Eutrophic Coastal Ecosystem. Front Microbiol 2021; 12:730377. [PMID: 34867847 PMCID: PMC8633418 DOI: 10.3389/fmicb.2021.730377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Ocean acidification, as one of the major consequences of global climate change, markedly affects multiple ecosystem functions in disparate marine environments from coastal habitats to the deep ocean. Evaluation of the responses of marine microbial community to the increasing partial pressure of CO2 (pCO2) is crucial to explore the microbe-driven biogeochemical processes in the future ocean. In this study, a microcosm incubation of eutrophic coastal water from Xiamen Bay under elevated pCO2 (about 1,000 μatm) and control (ambient air, about 380-410 μatm) conditions was conducted to investigate the effect of ocean acidification on the natural bacterioplankton community. During the 5-day incubation period, the chlorophyll a concentration and bacterioplankton abundance were not significantly affected by increased pCO2. Hierarchical clustering and non-metric multidimensional scaling analysis based on Bray-Curtis similarity among the bacterioplankton community derived from the 16S rRNA genes revealed an inconspicuous impact of elevated pCO2 on the bacterial community. During the incubation period, Proteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, and Epsilonbacteraeota were predominant in all microcosms. Despite the distinct temporal variation in the composition of the bacterioplankton community during the experimental period, statistical analyses showed that no significant difference was found on bacterioplankton taxa between elevated pCO2 and control, indicating that the bacterioplankton at the population-level were also insensitive to elevated pCO2. Our results therefore suggest that the bacterioplankton communities in the fluctuating and eutrophic coastal ecosystems appear to be adaptable to the short-term elevated pCO2.
Collapse
Affiliation(s)
- Yunlan Yang
- College of the Environment and Ecology, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Fei Zhang
- College of the Environment and Ecology, Xiamen University, Xiamen, China.,Laboratory of Marine Biology and Ecology, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, China
| | - Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Huifang Li
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Abirami B, Radhakrishnan M, Kumaran S, Wilson A. Impacts of global warming on marine microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:147905. [PMID: 34126492 DOI: 10.1016/j.scitotenv.2021.147905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/26/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Global warming in ocean ecosystems alters temperature, acidification, oxygen content, circulation, stratification, and nutrient inputs. Microorganisms play a dominant role in global biogeochemical cycles crucial for a planet's sustainability. Since microbial communities are highly dependent on the temperature factor, fluctuations in the same will lead to adverse effects on the microbial community organization. Throughout the Ocean, increase in evaporation rates causes the surface mixed layer to become shallower. This intensified stratification inhibits vertical transport of nutrient supplies. Such density driven processes will decrease oxygen solubility in surface waters leading to significant decrease of oxygen from future Ocean. Metabolism and diversity of microbes along with ocean biogeochemistry will be at great risk due to global warming and its related effects. As a response to the changes in temperature, alteration in the distribution of phytoplankta communities is observed all over the planet, creating changes in the primary production of the ocean causing massive impact on the biosphere. Marine microbial communities try to adapt to the changing ocean environmental conditions by responding with biogeographic range shifts, community structure modifications, and adaptive evolution. Persistence of this climate change on ocean ecosystems, in future, will pose serious threat to the metabolism and distribution of marine microbes leading to fluctuations in the biogeochemical cycles thereby affecting the overall ecosystem functioning. Genomics plays an important role in marine microbial research by providing tools to study the association between environment and organisms. The ecological and genomic perspectives of marine microbes are being investigated to design effective models to understand their physiology and evolution in a changing ocean. Mesocosm/microcosm experimental studies and field studies are in the need of the hour to evaluate the impact of climate shifts on microbial genesis.
Collapse
Affiliation(s)
- Baskaran Abirami
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Manikkam Radhakrishnan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Subramanian Kumaran
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Aruni Wilson
- Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; School of Medicine, Loma Linda University, CA, USA; Musculoskeletal Disease Research Laboratory, US Department of Veteran Affairs, Loma Linda, CA, USA.
| |
Collapse
|
5
|
Gallego R, Jacobs-Palmer E, Cribari K, Kelly RP. Environmental DNA metabarcoding reveals winners and losers of global change in coastal waters. Proc Biol Sci 2020; 287:20202424. [PMID: 33290686 DOI: 10.1098/rspb.2020.2424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studies of the ecological effects of global change often focus on one or a few species at a time. Consequently, we know relatively little about the changes underway at real-world scales of biological communities, which typically have hundreds or thousands of interacting species. Here, we use COI mtDNA amplicons from monthly samples of environmental DNA to survey 221 planktonic taxa along a gradient of temperature, salinity, dissolved oxygen and carbonate chemistry in nearshore marine habitat. The result is a high-resolution picture of changes in ecological communities using a technique replicable across a wide variety of ecosystems. We estimate community-level differences associated with time, space and environmental variables, and use these results to forecast near-term community changes due to warming and ocean acidification. We find distinct communities in warmer and more acidified conditions, with overall reduced richness in diatom assemblages and increased richness in dinoflagellates. Individual taxa finding more suitable habitat in near-future waters are more taxonomically varied and include the ubiquitous coccolithophore Emiliania huxleyi and the harmful dinoflagellate Alexandrium sp. These results suggest foundational changes for nearshore food webs under near-future conditions.
Collapse
Affiliation(s)
- Ramón Gallego
- School of Marine and Environmental Affairs, University of Washington, 3707 Brooklyn Avenue NE, Seattle, WA 98105, USA
| | - Emily Jacobs-Palmer
- School of Marine and Environmental Affairs, University of Washington, 3707 Brooklyn Avenue NE, Seattle, WA 98105, USA
| | - Kelly Cribari
- School of Marine and Environmental Affairs, University of Washington, 3707 Brooklyn Avenue NE, Seattle, WA 98105, USA
| | - Ryan P Kelly
- School of Marine and Environmental Affairs, University of Washington, 3707 Brooklyn Avenue NE, Seattle, WA 98105, USA
| |
Collapse
|