1
|
García-López M, Hernández P, Megias D, Ferrándiz MJ, de la Campa AG. Physiologic and Transcriptomic Effects Triggered by Overexpression of Wild Type and Mutant DNA Topoisomerase I in Streptococcus pneumoniae. Int J Mol Sci 2023; 24:15800. [PMID: 37958782 PMCID: PMC10648598 DOI: 10.3390/ijms242115800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Topoisomerase I (TopoI) in Streptococcus pneumoniae, encoded by topA, is a suitable target for drug development. Seconeolitsine (SCN) is a new antibiotic that specifically blocks this enzyme. We obtained the topARA mutant, which encodes an enzyme less active than the wild type (topAWT) and more resistant to SCN inhibition. Likely due to the essentiality of TopoI, we were unable to replace the topAWT allele by the mutant topARA version. We compared the in vivo activity of TopoIRA and TopoIWT using regulated overexpression strains, whose genes were either under the control of a moderately (PZn) or a highly active promoter (PMal). Overproduction of TopoIRA impaired growth, increased SCN resistance and, in the presence of the gyrase inhibitor novobiocin (NOV), caused lower relaxation than TopoIWT. Differential transcriptomes were observed when the topAWT and topARA expression levels were increased about 5-fold. However, higher increases (10-15 times), produced a similar transcriptome, affecting about 52% of the genome, and correlating with a high DNA relaxation level with most responsive genes locating in topological domains. These results confirmed that TopoI is indeed the target of SCN in S. pneumoniae and show the important role of TopoI in global transcription, supporting its suitability as an antibiotic target.
Collapse
Affiliation(s)
- Miriam García-López
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Pablo Hernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain;
| | - Diego Megias
- Unidad de Microscopía Confocal, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - María-José Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Adela G. de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
- Presidencia, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| |
Collapse
|
2
|
Bhowmick J, Nag M, Ghosh P, Rajmani RS, Chatterjee R, Karmakar K, Chandra K, Chatterjee J, Chakravortty D, Varadarajan R. A CcdB toxin-derived peptide acts as a broad-spectrum antibacterial therapeutic in infected mice. EMBO Rep 2023; 24:e55338. [PMID: 37166011 PMCID: PMC10328072 DOI: 10.15252/embr.202255338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023] Open
Abstract
The bacterial toxin CcdB (Controller of Cell death or division B) targets DNA Gyrase, an essential bacterial topoisomerase, which is also the molecular target for fluoroquinolones. Here, we present a short cell-penetrating 24-mer peptide, CP1-WT, derived from the Gyrase-binding region of CcdB and examine its effect on growth of Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus and a carbapenem- and tigecycline-resistant strain of Acinetobacter baumannii in both axenic cultures and mouse models of infection. The CP1-WT peptide shows significant improvement over ciprofloxacin in terms of its in vivo therapeutic efficacy in treating established infections of S. Typhimurium, S. aureus and A. baumannii. The molecular mechanism likely involves inhibition of Gyrase or Topoisomerase IV, depending on the strain used. The study validates the CcdB binding site on bacterial DNA Gyrase as a viable and alternative target to the fluoroquinolone binding site.
Collapse
Grants
- Department of Biotechnology, Ministry of Science and Technology, India - Indian Institute of Science (DBT-IISc) partnership program
- BT/COE/34/SP15219/2015 Department of Biotechnology, Ministry of Science and Technology, India
- DT.20/11/2015 Department of Biotechnology, Ministry of Science and Technology, India
- Department of Science and Technology, Ministry of Science and Technology, India (DST FIST)
- Ministry of Education, India (MHRD)
- University Grants Commission, Ministry of Education, India (UGC Centre for Advanced Studies)
- Department of Biotechnology, Ministry of Science and Technology, India
- Ministry of Education, India (MHRD)
Collapse
Affiliation(s)
- Jayantika Bhowmick
- Molecular Biophysics Unit (MBU)Indian Institute of ScienceBangaloreIndia
| | - Manish Nag
- Molecular Biophysics Unit (MBU)Indian Institute of ScienceBangaloreIndia
| | - Pritha Ghosh
- Molecular Biophysics Unit (MBU)Indian Institute of ScienceBangaloreIndia
| | - Raju S Rajmani
- Molecular Biophysics Unit (MBU)Indian Institute of ScienceBangaloreIndia
| | - Ritika Chatterjee
- Department of Microbiology and Cell BiologyIndian Institute of ScienceBangaloreIndia
| | - Kapudeep Karmakar
- Department of Microbiology and Cell BiologyIndian Institute of ScienceBangaloreIndia
| | - Kasturi Chandra
- Department of Microbiology and Cell BiologyIndian Institute of ScienceBangaloreIndia
| | - Jayanta Chatterjee
- Molecular Biophysics Unit (MBU)Indian Institute of ScienceBangaloreIndia
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell BiologyIndian Institute of ScienceBangaloreIndia
- School of BiologyIndian Institute of Science Education and Research Thiruvananthapuram (IISER TVM)ThiruvananthapuramIndia
| | | |
Collapse
|
3
|
Ortiz-Miravalles L, Sánchez-Angulo M, Sanz JM, Maestro B. Drug Repositioning as a Therapeutic Strategy against Streptococcus pneumoniae: Cell Membrane as Potential Target. Int J Mol Sci 2023; 24:ijms24065831. [PMID: 36982905 PMCID: PMC10058218 DOI: 10.3390/ijms24065831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
A collection of repurposing drugs (Prestwick Chemical Library) containing 1200 compounds was screened to investigate the drugs' antimicrobial effects against planktonic cultures of the respiratory pathogen Streptococcus pneumoniae. After four discrimination rounds, a set of seven compounds was finally selected, namely (i) clofilium tosylate; (ii) vanoxerine; (iii) mitoxantrone dihydrochloride; (iv) amiodarone hydrochloride; (v) tamoxifen citrate; (vi) terfenadine; and (vii) clomiphene citrate (Z, E). These molecules arrested pneumococcal growth in a liquid medium and induced a decrease in bacterial viability between 90.0% and 99.9% at 25 µM concentration, with minimal inhibitory concentrations (MICs) also in the micromolar range. Moreover, all compounds but mitoxantrone caused a remarkable increase in the permeability of the bacterial membrane and share a common, minimal chemical structure consisting of an aliphatic amine linked to a phenyl moiety via a short carbon/oxygen linker. These results open new possibilities to tackle pneumococcal disease through drug repositioning and provide clues for the design of novel membrane-targeted antimicrobials with a related chemical structure.
Collapse
Affiliation(s)
- Laura Ortiz-Miravalles
- Protein Engineering against Antimicrobial Resistance Group, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Manuel Sánchez-Angulo
- Department of Vegetal Production and Microbiology, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Jesús M Sanz
- Protein Engineering against Antimicrobial Resistance Group, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Beatriz Maestro
- Protein Engineering against Antimicrobial Resistance Group, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
4
|
Globally Vibrio cholera antibiotics resistance to RNA and DNA effective antibiotics: A systematic review and meta-analysis. Microb Pathog 2022; 172:105514. [DOI: 10.1016/j.micpath.2022.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/19/2022]
|
5
|
Tirado-Vélez JM, Carreño D, Sevillano D, Alou L, Yuste J, de la Campa AG. Seconeolitsine, the Novel Inhibitor of DNA Topoisomerase I, Protects against Invasive Pneumococcal Disease Caused by Fluoroquinolone-Resistant Strains. Antibiotics (Basel) 2021; 10:antibiotics10050573. [PMID: 34068007 PMCID: PMC8152265 DOI: 10.3390/antibiotics10050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance in Streptococcus pneumoniae has increased worldwide, making fluoroquinolones an alternative therapeutic option. Fluoroquinolones inhibit the type II DNA topoisomerases (topoisomerase IV and gyrase). In this study we have evaluated the in vivo activity of seconeolitsine, an inhibitor of topoisomerase I. Levofloxacin (12.5 to 50 mg/kg) or seconeolitsine (5 to 40 mg/kg) were administered every 12 h during two days in mice infected with a serotype 8-resistant strain. At 48 h, a 70% protection was obtained with seconeolitsine (40 mg/kg; p < 0.001). However, survival with levofloxacin was 20%, regardless of the dose. In addition, seconeolitsine decreased bacteremia efficiently. Levofloxacin had higher levels in serum than seconeolitsine (Cmax of 14.7 vs. 1.6; p < 0.01) and higher values of area under the serum concentration-time curve (AUC0-12h of 17.3 vs. 5; p < 0.01). However, seconeolitsine showed higher levels of time to peak concentration and elimination half-life. This is consistent with the higher binding of seconeolitsine to plasma proteins (40% and 80% when used at 1 µg/mL and 50 µg/mL, respectively) in comparison to levofloxacin (12% at 5 µg/mL and 33% at 50 µg/mL). Our results suggest that seconeolitsine would be a promising therapeutic alternative against pneumococcal isolates with high fluoroquinolone resistance levels.
Collapse
Affiliation(s)
- Jose Manuel Tirado-Vélez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (J.M.T.-V.); (D.C.)
| | - David Carreño
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (J.M.T.-V.); (D.C.)
| | - David Sevillano
- Microbiology Division-Department of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.S.); (L.A.)
| | - Luis Alou
- Microbiology Division-Department of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.S.); (L.A.)
| | - José Yuste
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (J.M.T.-V.); (D.C.)
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Correspondence: (J.Y.); (A.G.d.l.C.); Tel.: +34-918-223-620 (J.Y.); +34-918-223-944 (A.G.d.l.C.)
| | - Adela G. de la Campa
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (J.M.T.-V.); (D.C.)
- Presidencia, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
- Correspondence: (J.Y.); (A.G.d.l.C.); Tel.: +34-918-223-620 (J.Y.); +34-918-223-944 (A.G.d.l.C.)
| |
Collapse
|
6
|
Ferrándiz MJ, Hernández P, de la Campa AG. Genome-wide proximity between RNA polymerase and DNA topoisomerase I supports transcription in Streptococcus pneumoniae. PLoS Genet 2021; 17:e1009542. [PMID: 33930020 PMCID: PMC8115823 DOI: 10.1371/journal.pgen.1009542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/12/2021] [Accepted: 04/10/2021] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pneumoniae is a major cause of disease and death that develops resistance to multiple antibiotics. DNA topoisomerase I (TopoI) is a novel pneumococcal drug target. TopoI is the sole type-I pneumococcal topoisomerase that regulates supercoiling homeostasis in this bacterium. In this study, a direct in vitro interaction between TopoI and RNA polymerase (RNAP) was detected by surface plasmon resonance. To understand the interplay between transcription and supercoiling regulation in vivo, genome-wide association of RNAP and TopoI was studied by ChIP-Seq. RNAP and TopoI were enriched at the promoters of 435 and 356 genes, respectively. Higher levels of expression were consistently measured in those genes whose promoters recruit both RNAP and TopoI, in contrast with those enriched in only one of them. Both enzymes occupied a narrow region close to the ATG codon. In addition, RNAP displayed a regular distribution throughout the coding regions. Likewise, the summits of peaks called with MACS tool, mapped around the ATG codon in both cases. However, RNAP showed a broader distribution towards ATG-downstream positions. Remarkably, inhibition of RNAP with rifampicin prevented the localization of TopoI at promoters and, vice versa, inhibition of TopoI with seconeolitsine prevented the binding of RNAP to promoters. This indicates a functional interplay between RNAP and TopoI. To determine the molecular factors responsible for RNAP and TopoI co-recruitment, we looked for DNA sequence motifs. We identified a motif corresponding to a -10-extended promoter for TopoI and for RNAP. Furthermore, RNAP was preferentially recruited to genes co-directionally oriented with replication, while TopoI was more abundant in head-on genes. TopoI was located in the intergenic regions of divergent genes pairs, near the promoter of the head-on gene of the pair. These results suggest a role for TopoI in the formation/stability of the RNAP-DNA complex at the promoter and during transcript elongation. Streptococcus pneumoniae is a main cause of pneumonia, meningitis and sepsis. Antibiotic resistance in this bacterium has spread worldwide, compromising medical treatment. Therefore, the development of new drugs directed to novel targets is necessary. DNA topology is essential for the regulation of replication and gene expression. Topology is regulated and maintained by DNA topoisomerases, carrying out nicking-closing reactions. Type I and type II topoisomerases act on single-stranded and double-stranded DNA, respectively. Although type II topoisomerases are the target of clinically used antibiotics, there are no clinical antibiotics directed against type I topoisomerases. Seconeolitsine, a new drug targeting topoisomerase I, is effective against bacteria that have a single type I topoisomerase, such as Streptococcus pneumoniae and Mycobacterium tuberculosis. In this report, we studied the role of topoisomerase I in transcription. We found that topoisomerase I and RNA polymerase physically interact in vitro and co-localize at gene promoters in vivo. Binding of each of these enzymes to promoters was prevented by the specific inhibition of the other enzyme, supporting a role for topoisomerase I in RNA polymerase transcription.
Collapse
Affiliation(s)
- María-José Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Pablo Hernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Adela G. de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Presidencia, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|