1
|
Jasim SA, Salahdin OD, Malathi H, Sharma N, Rab SO, Aminov Z, Pramanik A, Mohammed IH, Jawad MA, Gabel BC. Targeting Hepatic Cancer Stem Cells (CSCs) and Related Drug Resistance by Small Interfering RNA (siRNA). Cell Biochem Biophys 2024:10.1007/s12013-024-01423-5. [PMID: 39060914 DOI: 10.1007/s12013-024-01423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Tumor recurrence after curative therapy and hepatocellular carcinoma (HCC) cells' resistance to conventional therapies is the reasons for the worse clinical results of HCC patients. A tiny population of cancer cells with a strong potential for self-renewal, differentiation, and tumorigenesis has been identified as cancer stem cells (CSCs). The discovery of CSC surface markers and the separation of CSC subpopulations from HCC cells have been made possible by recent developments in the study of hepatic (liver) CSCs. Hepatic CSC surface markers include epithelial cell adhesion molecules (EpCAM), CD133, CD90, CD13, CD44, OV-6, ALDH, and K19. CSCs have a significant influence on the development of cancer, invasiveness, self-renewal, metastasis, and drug resistance in HCC, and thus provide a therapeutic chance to treat HCC and avoid its recurrence. Therefore, it is essential to develop treatment approaches that specifically and effectively target hepatic stem cells. Given this, one potential treatment approach is to use particular small interfering RNA (siRNA) to target CSC, disrupting their behavior and microenvironment as well as changing their epigenetic state. The characteristics of CSCs in HCC are outlined in this study, along with new treatment approaches based on siRNA that may be used to target hepatic CSCs and overcome HCC resistance to traditional therapies.
Collapse
Affiliation(s)
| | | | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University, Bangalore, Karnataka, India
| | - Neha Sharma
- Chandigarh Pharmacy College, Chandigarh group of Colleges, Jhanjeri, 140307, Mohali, Punjab, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Israa Hussein Mohammed
- College of nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Benien C Gabel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
3
|
Lin T, Guo X, Du Q, Liu W, Zhong X, Wang S, Cao L. MicroRNA let-7c-5p Alleviates in Hepatocellular Carcinoma by Targeting Enhancer of Zeste Homolog 2: A Study Intersecting Bioinformatic Analysis and Validated Experiments. Crit Rev Immunol 2024; 44:23-39. [PMID: 38505919 DOI: 10.1615/critrevimmunol.2024051519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Enhancer of zeste homolog 2 (EZH2)gene has a prognostic role in hepatocellular carcinoma (HCC). This study aimed to identify the role of microRNAs (miRNAs) let-7c-5p by targeting EZH2 in HCC. We downloaded gene and miRNA RNA-seq data from The Cancer Genome Atlas (TCGA) database. Differences in EZH2 expression between different groups were analyzed and the association of EZH2 expression with HCC prognosis was detected using Cox regression analysis. The miRNA-EZH2-pathway network was constructed. Dual-luciferase reporter assay was performed to detect the hsa-let-7c-5p-EZH2. Cell proliferation, migration, invasion, and apoptosis were detected by CCK-8, Wound healing, Transwell, and Flow cytometry, respectively. RT-qPCR and Western blot were used to detect the expression of let-7c-5p and EZH2. EZH2 was upregulated in HCC tumors (P < 0.0001). Cox regression analysis showed that TCGA HCC patients with high EZH2 expression levels showed a short survival time [hazard ratio (HR) = 1.677, 95% confidence interval (CI) 1.316-2.137; P < 0.0001]. Seven miRNAs were negatively correlated with EZH2 expression and were significantly downregulated in HCC tumor samples (P < 0.0001), in which hsa-let-7c-5p was associated with prognosis in HCC (HR = 0.849 95% CI 0.739-0.975; P = 0.021). We identified 14 immune cells that showed significant differences in EZH2 high- and low-expression groups. Additionally, let-7c-5p inhibited HCC cell proliferation, migration, and invasion and reversed the promoted effects of EZH2 on HCC cell malignant characteristics. hsa-let-7c-5p-EZH2 significantly suppressed HCC malignant characteristics, which can be used for HCC prognosis.
Collapse
Affiliation(s)
- Tianyu Lin
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Xinli Guo
- Department of Operating Room, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Qian Du
- Department of General Surgery, The 903rd Hospital of PLA, Hangzhou 310000, China
| | - Wei Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Xin Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Suihan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
4
|
Yang K, Halima A, Chan TA. Antigen presentation in cancer - mechanisms and clinical implications for immunotherapy. Nat Rev Clin Oncol 2023; 20:604-623. [PMID: 37328642 DOI: 10.1038/s41571-023-00789-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, the emergence of effective immunotherapies has revolutionized the clinical management of many types of cancers. However, long-term durable tumour control is only achieved in a fraction of patients who receive these therapies. Understanding the mechanisms underlying clinical response and resistance to treatment is therefore essential to expanding the level of clinical benefit obtained from immunotherapies. In this Review, we describe the molecular mechanisms of antigen processing and presentation in tumours and their clinical consequences. We examine how various aspects of the antigen-presentation machinery (APM) shape tumour immunity. In particular, we discuss genomic variants in HLA alleles and other APM components, highlighting their influence on the immunopeptidomes of both malignant cells and immune cells. Understanding the APM, how it is regulated and how it changes in tumour cells is crucial for determining which patients will respond to immunotherapy and why some patients develop resistance. We focus on recently discovered molecular and genomic alterations that drive the clinical outcomes of patients receiving immune-checkpoint inhibitors. An improved understanding of how these variables mediate tumour-immune interactions is expected to guide the more precise administration of immunotherapies and reveal potentially promising directions for the development of new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmed Halima
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA.
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA.
- National Center for Regenerative Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
5
|
Mao Q, Wu P, Li H, Fu X, Gao X, Yang L. CRISPR/Cas9‑mediated EZH2 knockout suppresses the proliferation and migration of triple‑negative breast cancer cells. Oncol Lett 2023; 26:343. [PMID: 37427349 PMCID: PMC10326815 DOI: 10.3892/ol.2023.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of BC characterized by extensive intratumoral heterogeneity. Compared with other types of BC, TNBC is more prone to invasion and metastasis. The aim of the present study was to determine whether adenovirus-mediated clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 system is capable of effectively targeting enhancer of zeste homolog 2 (EZH2) in TNBC cells and lay an experimental basis for the investigation of the CRISPR/Cas9 system as a gene therapy for BC. In the present study, EZH2 was knocked out in MDA-MB-231 cells using the CRISPR/Cas9 gene editing tool to create EZH2-knockout (KO) group (EZH2-KO group). Moreover, the GFP knockout group (control group), and a blank group (Blank group), were employed. The success of vector construction and EZH2-KO were verified by T7 endonuclease I (T7EI) restriction enzyme digestion, mRNA detection and western blotting. Changes in proliferation and migration ability of MDA-MB-231 cells following gene editing were detected by MTT, wound healing, Transwell and in vivo tumor biology assays. As indicated by the results of mRNA and protein detection, the mRNA and protein expression of EZH2 were significantly downregulated in the EZH2-KO group. The difference in EZH2 mRNA and protein between the EZH2-KO and the two control groups was statistically significant. MTT, wound healing and transwell assay suggested that the proliferation and migration ability of MDA-MB-231 cells in the EZH2-KO group were significantly decreased after EZH2 knockout. In vivo, the tumor growth rate in the EZH2-KO group was significantly lower than that in the control groups. In brief, the present study revealed that the biological functions of tumor cells were inhibited after EZH2 knockout in MDA-MB-231 cells. The aforementioned findings suggested that EZH2 can have a key role in the development of TNBC.
Collapse
Affiliation(s)
- Qiqi Mao
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Peibin Wu
- Faculty of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Haochen Li
- Department of Healthcare, Tianjin International Travel Healthcare Center (Tianjin Customs Port Outpatient Department), Tianjin 300000, P.R. China
| | - Xiaolan Fu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Xuechen Gao
- Department of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Lei Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| |
Collapse
|
6
|
Yang Y, Zhang Y, Cao J, Su Z, Li F, Zhang P, Zhang B, Liu R, Zhang L, Xie J, Li J, Zhang J, Chen X, Hong A. FGFR4 and EZH2 inhibitors synergistically induce hepatocellular carcinoma apoptosis via repressing YAP signaling. J Exp Clin Cancer Res 2023; 42:96. [PMID: 37085881 PMCID: PMC10122280 DOI: 10.1186/s13046-023-02659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/30/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers worldwide, but current treatment options remain limited and cause serious life-threatening side effects. Aberrant FGFR4 signaling has been validated as an oncogenic driver of HCC, and EZH2, the catalytic subunit of the PRC2 complex, is a potential factor that contributes to acquired drug resistance in many tumors, including HCC. However, the functional relationship between these two carcinogenic factors, especially their significance for HCC treatment, remains unclear. In this study, we systematically evaluated the feasibility of a combination therapy targeting FGFR4 and EZH2 for HCC. METHODS RNA sequencing data of patients with Liver hepatocellular carcinoma (LIHC) from The Cancer Genome Atlas (TCGA) were analyzed to determine FGFR4 and EZH2 expression and their interaction with prognosis. Moreover, the HCC cell lines, zebrafish/mouse HCC xenografts and zebrafish HCC primary tumors were treated with FGFR4 inhibitor (Roblitinib) and/or EZH2 inhibitor (CPI-169) and then subjected to cell proliferation, viability, apoptosis, and tumor growth analyses to evaluate the feasibility of combination therapy for HCC both in vitro and in vivo. Furthermore, RNA-Seq was performed in combination with ChIP-Seq data analysis to investigate the critical mechanism underlying the combination treatment with Roblitinib and CPI-169. RESULTS EZH2 accumulated through the non-canonical NF-kB signaling in response to FGFR4 inhibitor treatment, and the elevated EZH2 levels led to the antagonism of HCC against Roblitinib (FGFR4 inhibitor). Notably, knockdown of EZH2 sensitized HCC cells to Roblitinib, while the combination treatment of Roblitinib and CPI-169 (EZH2 inhibitor) synergistically induced the HCC cell apoptosis in vitro and suppressed the zebrafish/mouse HCC xenografts and zebrafish HCC primary tumors development in vivo. Moreover, Roblitinib and CPI-169 synergistically inhibited HCC development via repressing YAP signaling. CONCLUSIONS Collectively, our study highlighted the potential of the therapeutic combination of FGFR4 and EZH2 inhibitors, which would provide new references for the further development of clinical treatment strategies for HCC.
Collapse
Affiliation(s)
- Yiqi Yang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
- The First Affiliated Hospital, Ji'nan University, Guangzhou, 510630, China
| | - Yibo Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Jieqiong Cao
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
- The First Affiliated Hospital, Ji'nan University, Guangzhou, 510630, China
| | - Zijian Su
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Fu Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Peiguang Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Bihui Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Rongzhan Liu
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Linhao Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Junye Xie
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Jingsheng Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Jinting Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Xiaojia Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China.
- The First Affiliated Hospital, Ji'nan University, Guangzhou, 510630, China.
| | - An Hong
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China.
- The First Affiliated Hospital, Ji'nan University, Guangzhou, 510630, China.
| |
Collapse
|
7
|
Xu Y, Cai J, Zhong K, Wen Y, Cai L, He G, Liao H, Zhang C, Fu S, Chen T, Cai J, Zhong X, Chen C, Huang M, Cheng Y, Pan M. Plasma-only circulating tumor DNA analysis detects minimal residual disease and predicts early relapse in hepatocellular carcinoma patients undergoing curative resection. Front Oncol 2023; 13:1119744. [PMID: 36959801 PMCID: PMC10028131 DOI: 10.3389/fonc.2023.1119744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Background Minimal residual disease (MRD) is considered an essential factor leading to relapse within 2 years (early relapse) after radical surgery, which is challenging to be detected by conventional imaging. Circulating tumor DNA (ctDNA) provides a novel approach for detecting MRD and predicting clinical outcomes. Here, we tried to construct a fixed panel for plasma-only ctDNA NGS to enable tumor-uninformed MRD detection in hepatocellular carcinoma (HCC). Methods Here, we performed the followings: (i) profiling genomic alteration spectrum of ctDNA from the Chinese HCC cohort consisting of 493 individuals by NGS; (ii) screening of MRD monitoring genes; and (iii) performance evaluation of MRD monitoring genes in predicting early relapse in the ZJZS2020 cohort comprising 20 HCC patients who underwent curative resection. Results A total of 493 plasma samples from the Chinese HCC cohort were detected using a 381/733-gene NGS panel to characterize the mutational spectrum of ctDNA. Most patients (94.1%, 464/493) had at least one mutation in ctDNA. The variants fell most frequently in TP53 (45.1%), LRP1B (20.2%), TERT (20.2%), FAT1 (16.2%), and CTNNB1 (13.4%). By customized filtering strategy, 13 MRD monitoring genes were identified, and any plasma sample with one or more MRD monitoring gene mutations was considered MRD-positive. In the ZJZS2020 cohort, MRD positivity presented a sensitivity of 75% (6/8) and a specificity of 100% (6/6) in identifying early postoperative relapse. The Kaplan-Meier analysis revealed a significantly short relapse-free survival (RFS; median RFS, 4.2 months vs. NR, P=0.002) in the MRD-positive patients versus those with MRD negativity. Cox regression analyses revealed MRD positivity as an independent predictor of poor RFS (HR 13.00, 95% CI 2.60-69.00, P=0.002). Conclusions We successfully developed a 13-gene panel for plasma-only MRD detection, which was effective and convenient for predicting the risk of early postoperative relapse in HCC.
Collapse
Affiliation(s)
- Yuyan Xu
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianpeng Cai
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kaihang Zhong
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yaohong Wen
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Cai
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guolin He
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hangyu Liao
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Zhang
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shunjun Fu
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Chen
- Medical Affairs, 3D Medicines, Inc., Shanghai, China
| | - Jinping Cai
- Medical Affairs, 3D Medicines, Inc., Shanghai, China
| | - Xuefeng Zhong
- Medical Affairs, 3D Medicines, Inc., Shanghai, China
| | - Chunzhu Chen
- Medical Affairs, 3D Medicines, Inc., Shanghai, China
| | - Mengli Huang
- Medical Affairs, 3D Medicines, Inc., Shanghai, China
| | - Yuan Cheng
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mingxin Pan
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Ren Z, Zhang J, Zheng D, Luo Y, Song Z, Chen F, Li A, Liu X. Identification of Prognosis-Related Oxidative Stress Model with Immunosuppression in HCC. Biomedicines 2023; 11:biomedicines11030695. [PMID: 36979675 PMCID: PMC10045103 DOI: 10.3390/biomedicines11030695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 03/03/2023] Open
Abstract
For hepatocellular carcinoma (HCC) patients, we attempted to establish a new oxidative stress (OS)-related prognostic model for predicting prognosis, exploring immune microenvironment, and predicting the immunotherapy response. Significantly differently expressed oxidative stress-related genes (DEOSGs) between normal and HCC samples from the Cancer Genome Atlas (TCGA) were screened, and then based on weighted gene coexpression network analysis (WGCNA), HCC-related hub genes were discovered. Based on the least absolute shrinkage and selection operator (LASSO) and cox regression analysis, a prognostic model was developed. We validated the prognostic model’s predictive power using an external validation cohort: the International Cancer Genome Consortium (ICGC).Then a nomogram was determined. Furthermore, we also examined the relationship of the risk model and clinical characteristics as well as immune microenvironment. 434 DEOSGs, comprising 62 downregulated and 372 upregulated genes (p < 0.05 and |log2FC| ≥ 1), and 257 HCC-related hub genes were recognized in HCC. Afterward, we built a five-DEOSG (LOX, CYP2C9, EIF2B4, EZH2, and SRXN1) prognostic risk model. Using the nomogram, the risk model was shown to have good prognostic value. Compared to the low risk group, HCC patients with high risk had poorer outcomes, worse pathological grades, and advanced tumor stages (p < 0.05). There were significant increases in LOX, EIF2B4, EZH2, and SRXN1 expression in HCC samples, while CYP2C9 expression was decreased. Finally, Real-time PCR (RT-qPCR) confirmed the mRNA expressions of five genes (CYP2C9, EIF2B4, EZH2, SRXN1, LOX) in HCC cell lines. Our study constructed a prognostic OS-related model with strong predictive power and potential as an immunosuppressive biomarker for HCC leading to improving prediction and providing new insights for HCC immunotherapy.
Collapse
Affiliation(s)
- Zhixuan Ren
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Jiakang Zhang
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Dayong Zheng
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Yue Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Zhenghui Song
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Fengsheng Chen
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Aimin Li
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
- Correspondence: (A.L.); (X.L.)
| | - Xinhui Liu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
- Correspondence: (A.L.); (X.L.)
| |
Collapse
|
9
|
Zhu J, Zheng Y, Liu Y, Chen M, Liu Y, Li J. Association between HMGA1 and immunosuppression in hepatocellular carcinoma: A comprehensive bioinformatics analysis. Medicine (Baltimore) 2023; 102:e32707. [PMID: 36705364 PMCID: PMC9876027 DOI: 10.1097/md.0000000000032707] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The high mobility group A1 (HMGA1) gene is overexpressed in malignant tumors, and its expression level correlates with the progression and metastasis of tumors. However, the specific role of HMGA1 in hepatocellular carcinoma (HCC) and relevant influencing approaches in tumor immunity remain unclear. In this study, the expression and clinical significance of HMGA1 in HCC immunity were analyzed. The expression levels of HMGA1 mRNA and protein in HCC tissue and normal liver tissue were analyzed based on the cancer genome atlas, the gene expression omnibus and the Human Protein Atlas databases. The correlation between HMGA1 and clinicopathological factors was analyzed, and survival was estimated based on the expression of HMGA1. Gene set cancer analysis and the TISIDB database were used to identify tumor-infiltrating immune cells and immune inhibitors. Gene set enrichment analysis was performed to determine the involved signaling pathway. The HMGA1 genetic alterations were identified with the cBioPortal for Cancer Genomics. The expression of HMGA1 mRNA and protein was significantly higher in HCC tissue and negatively correlated with survival. Neutrophils, Th17 cells, several immune inhibitors, and signaling pathways were positively correlated with the expression of HMGA1. Amplification was the main type of genetic alteration in HMGA1. These findings demonstrate that HMGA1 can be a therapeutic target and a potential biomarker to predict the prognosis of patients with HCC. HMGA1 may affect the progression of HCC by suppressing the immune function of these patients.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yongshun Zheng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuyao Liu
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengding Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
- * Correspondence: Jiabin Li, Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Jixi road 218, Hefei, Anhui 230022, China (e-mail: )
| |
Collapse
|
10
|
Zeng J, Sun L, Huang J, Yang X, Hu W. Enhancer of zeste homolog 2 is a negative prognostic biomarker and correlated with immune infiltrates in meningioma. Front Neurosci 2022; 16:1076530. [PMID: 36532284 PMCID: PMC9748184 DOI: 10.3389/fnins.2022.1076530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/14/2022] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Enhancer of zeste homolog 2 (EZH2), an important epigenetic regulator, that mainly regulates histone H3 lysine 27 trimethylation (H3K27me3) through histone methyltransferase, and participates in promoting the development of tumors. At present, the loss of H3K27me3 expression in meningioma is a poor prognostic factor, but the research of EZH2 in meningioma is rare. Therefore, we aim to explore the expression of EZH2 in the meningioma and its correlation with the prognosis and immune microenvironment and lay the foundation for the subsequently potential targeted therapy and immunotherapy for meningioma. METHODS Tissue microarray immunohistochemistry staining was performed on 276 meningioma samples from Sun Yat-sen University Cancer Center. Expression levels of EZH2, H3K27me3, Ki67, programmed cell death protein 1 (PD-1), programmed cell death 1 ligand 1 (PD-L1), CD4, CD8, CD20, FOXP3, CD68, and CD163 were evaluated. Cox regression analyses were performed, and the Kaplan-Meier (KM) method was used to construct survival curves. In addition, we use biological information methods to analyze the mRNA expression of EZH2 and its relationship with the prognosis and immune microenvironment in the gene expression omnibus (GEO) database. RESULTS Enhancer of zeste homolog 2 expression is concentrated in World Health Organization (WHO) grades 2 and 3 meningiomas (8.3+ and 33.3%+). We found that EZH2 expression was associated with a worse prognosis in meningioma (P < 0.001), the same results were confirmed in the GEO database (P < 0.001). Both EZH2 expression and H3K27me3 deletion (P = 0.035) predicted a worse prognosis, but EZH2 has no correlation with H3K27me3 expression. EZH2 expression was closely associated with increased Ki67 index (P < 0.001). In addition, EZH2 was associated with the immune microenvironment and positively correlated with PD-L1 expression (P < 0.001). CONCLUSION Enhancer of zeste homolog 2 is a new prognostic biomarker in meningioma. It correlates with PD-L1 expression and closely related to tumor immunosuppression. Our research can provide a reference for the potential targeted therapy and immunotherapy of meningioma in the future.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lu Sun
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiaming Huang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia Yang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wanming Hu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
11
|
Tang D, Zhao L, Mu R, Ao Y, Zhang X, Li X. LncRNA colorectal neoplasia differentially expressed promotes glycolysis of liver cancer cells by regulating hypoxia-inducible factor 1α. CHINESE J PHYSIOL 2022; 65:311-318. [PMID: 36588357 DOI: 10.4103/0304-4920.365458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
LncRNAs are associated with tumorigenesis of liver cancer. LncRNA Colorectal Neoplasia Differentially Expressed (CRNDE) was identified as an oncogenic lncRNA and involved in tumor growth and metastasis. The role of CRNDE in liver cancer was investigated. CRNDE was elevated in liver cancer cells. Knockdown of CRNDE decreased cell viability and inhibited proliferation of liver cancer. Moreover, knockdown of CRNDE reduced levels of extracellular acidification rate, glucose consumption, and lactate production to repress glycolysis of liver cancer. Silence of CRNDE enhanced the expression of miR-142 and reduced enhancer of zeste homolog 2 (EZH2) and hypoxia-inducible factor 1α (HIF-1α). Over-expression of HIF-1α attenuated CRNDE silence-induced decrease of glucose consumption and lactate production. Injection with sh-CRNDE virus reduced in vivo tumor growth of liver cancer through up-regulation of miR-142 and down-regulation of EZH2 and HIF-1α. In conclusion, knockdown of CRNDE suppressed cell proliferation, glycolysis, and tumor growth of liver cancer through EZH2/miR-142/HIF-1α.
Collapse
Affiliation(s)
- Dan Tang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Lijin Zhao
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Rui Mu
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yu Ao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Xuyang Zhang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Xiongxiong Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
12
|
Yu X, Chen P, Yi W, Ruan W, Xiong X. Identification of cell senescence molecular subtypes in prediction of the prognosis and immunotherapy of hepatitis B virus-related hepatocellular carcinoma. Front Immunol 2022; 13:1029872. [PMID: 36275676 PMCID: PMC9582940 DOI: 10.3389/fimmu.2022.1029872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/20/2022] [Indexed: 01/10/2023] Open
Abstract
Hepatitis B virus (HBV)-infected hepatocellular carcinoma (HCC) has a high incidence and fatality rate worldwide, being among the most prevalent cancers. The growing body of data indicating cellular senescence (CS) to be a critical factor in hepatocarcinogenesis. The predictive value of CS in HBV-related HCC and its role in the immune microenvironment are unknown. To determine the cellular senescence profile of HBV-related HCC and its role in shaping the immune microenvironment, this study employed a rigorous evaluation of multiple datasets encompassing 793 HBV-related HCC samples. Two novel distinct CS subtypes were first identified by nonnegative matrix factorization, and we found that the senescence-activated subgroup had the worst prognosis and correlated with cancer progression. C1 and C2 were identified as the senescence-suppressed and senescence-activated subgroups. The immune microenvironment indicated that C2 exhibited a relatively low immune status, higher tumor purity, and lower immune scores and estimated scores, while the C1 subgroup possessed a better prognosis. The CS score signature based on five genes (CENPA, EZH2, G6PD, HDAC1, and PRPF19) was established using univariate Cox regression and the lasso method. ICGC-LIRI and GSE14520 cohorts were used to validate the reliability of the CS scoring system. In addition, we examined the association between the risk score and hallmark pathways through gene set variation analysis and gene set enrichment analysis. The results revealed a high CS score to be associated with the activation of cell senescence-related pathways. The CS score and other clinical features were combined to generate a CS dynamic nomogram with a better predictive capacity for OS at 1, 2, and 3 years than other clinical parameters. Our study demonstrated that cellular senescence patterns play a non-negligible role in shaping the characteristics of the immune microenvironment and profoundly affecting tumor prognosis. The results of this study will help predict patient prognosis more accurately and may assist in development of personalized immunotherapy for HBV-related HCC patients.
Collapse
Affiliation(s)
- Xue Yu
- School of Medicine, Jianghan University, Wuhan, China
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- *Correspondence: Xiaoli Xiong,
| | - Peng Chen
- Department of Respiratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- *Correspondence: Xiaoli Xiong,
| | - Wei Yi
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wen Ruan
- School of Medicine, Jianghan University, Wuhan, China
| | - Xiaoli Xiong
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- *Correspondence: Xiaoli Xiong,
| |
Collapse
|
13
|
Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:353. [PMID: 36198685 PMCID: PMC9535022 DOI: 10.1038/s41392-022-01200-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/08/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death across the world. Unlike lung adenocarcinoma, patients with lung squamous cell carcinoma (LSCC) have not benefitted from targeted therapies. Although immunotherapy has significantly improved cancer patients' outcomes, the relatively low response rate and severe adverse events hinder the clinical application of this promising treatment in LSCC. Therefore, it is of vital importance to have a better understanding of the mechanisms underlying the pathogenesis of LSCC as well as the inner connection among different signaling pathways, which will surely provide opportunities for more effective therapeutic interventions for LSCC. In this review, new insights were given about classical signaling pathways which have been proved in other cancer types but not in LSCC, including PI3K signaling pathway, VEGF/VEGFR signaling, and CDK4/6 pathway. Other signaling pathways which may have therapeutic potentials in LSCC were also discussed, including the FGFR1 pathway, EGFR pathway, and KEAP1/NRF2 pathway. Next, chromosome 3q, which harbors two key squamous differentiation markers SOX2 and TP63 is discussed as well as its related potential therapeutic targets. We also provided some progress of LSCC in epigenetic therapies and immune checkpoints blockade (ICB) therapies. Subsequently, we outlined some combination strategies of ICB therapies and other targeted therapies. Finally, prospects and challenges were given related to the exploration and application of novel therapeutic strategies for LSCC.
Collapse
|
14
|
Zhang J, Xun M, Li C, Chen Y. The O-GlcNAcylation and its promotion to hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2022; 1877:188806. [PMID: 36152903 DOI: 10.1016/j.bbcan.2022.188806] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/27/2022]
Abstract
O-GlcNAcylation is a posttranslational modification that attaches O-linked β-N-acetylglucosamine (O-GlcNAc) to the serine and threonine residues of proteins. Such a glycosylation would alter the activities, stabilities, and interactions of target proteins that are functional in a wide range of biological processes and diseases. Accumulating evidence indicates that O-GlcNAcylation is tightly associated with hepatocellular carcinoma (HCC) in its onset, growth, invasion and metastasis, drug resistance, and stemness. Here we summarize the discoveries of the role of O-GlcNAcylation in HCC and its function mechanism, aiming to deepen our understanding of HCC pathology, generate more biomarkers for its diagnosis and prognosis, and offer novel molecular targets for its treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China
| | - Min Xun
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China
| | - Chaojie Li
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China.
| |
Collapse
|
15
|
Cai J, Wu S, Zhang F, Dai Z. Construction and Validation of an Epigenetic Regulator Signature as A Novel Biomarker For Prognosis, Immunotherapy, And Chemotherapy In Hepatocellular Carcinoma. Front Immunol 2022; 13:952413. [PMID: 35911718 PMCID: PMC9330038 DOI: 10.3389/fimmu.2022.952413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Background Epigenetic modification regulates various aspects of cancer biology, from tumor growth and invasion to immune microenvironment modulation. Whether epigenetic regulators (EGRs) can decide tumor malignant degree and risk of immune evasion in liver hepatocellular carcinoma (LIHC) remains unclear. Method An EGR signature called “EGRscore” was constructed based on bulk RNA-seq data of EGR in hepatocellular carcinoma (HCC). The correlation between EGRscore and overall survival (OS) was validated in HCC cohorts and other tumor cohorts. Mutation profiles, copy number alterations (CNAs), enriched pathways, and response to immunotherapy and chemotherapy were compared between EGRscore-high and EGRscore-low patients. Results We found that EGRscore was associated with OS in HCC as well as several tumors including glioma, uveal melanoma (UVM), and kidney tumors. A mechanism study demonstrated that the distinct mutation profile of TP53 was present in EGRscore-high and EGRscore-low patients. Meanwhile, EGRscore-low patients were characterized with immune cells that promote killing tumors. Furthermore, EGRscore was associated with genes regulating drug resistance in HCC. Finally, we indicated that EGRscore-low patients had higher response rates to immunotherapy and targeted therapy. Conclusions EGRscore could be used to distinguish OS, tumor progression, mutation pattern, and immune microenvironment. The present study contributes to improving hepatocellular carcinoma patient prognosis and predicting response to immunotherapy.
Collapse
Affiliation(s)
- Jialiang Cai
- Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Suiyi Wu
- Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Feng Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhi Dai
- Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
- *Correspondence: Zhi Dai,
| |
Collapse
|
16
|
Identification of a Necroptosis-Related Prognostic Signature and Associated Regulatory Axis in Liver Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:3968303. [PMID: 35855852 PMCID: PMC9288334 DOI: 10.1155/2022/3968303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022]
Abstract
Background Liver hepatocellular carcinoma (LIHC) ranks the sixth in global cancer incidence with poor prognosis. Necroptosis is a kind of regulated cell death and has been proved to be of significance in cancer occurrence and progression. However, few studies comprehensively discuss the potential applications of necroptosis-related genes (NRGs) in the prognostic evaluation and immunotherapy of LIHC. Methods The prognostic signature in the present study was built up using LASSO Cox regression analysis. Integrated bioinformatics tools were utilized to explore the potential mRNA-miRNA-lncRNA regulatory axis in LIHC. Furthermore, qRT-PCR method was used to verify the EZH2 expression in LIHC tissues. Furthermore, prognostic performance of EZH2 in LIHC was assessed by Kaplan-Meier method. Results A total of 14 NRGs were differentially expressed in LIHC tissues. The overall genetic mutation status of these NRGs in LIHC was also shown. NRGs were significantly correlated with programmed necrotic cell death, as well as Toll-like receptor signaling pathway in GO and KEGG pathway analysis. Kaplan-Meier analysis revealed that ALDH2, EZH2, NDRG2, PGAM5, RIPK1, and TRAF2 were related to the prognosis. A prognostic signature was constructed by these six genes and showed medium to high accuracy in the prediction of LIHC patients' prognosis. Further analysis revealed that NRGs were correlated with pathological stage, immune infiltration, and drug resistance in LIHC. Moreover, we identified a potential lncRNA TUG1/miR-26b-5p/EZH2 regulatory axis in LIHC, which might affect the progression of LIHC. qRT-PCR suggested a higher mRNA level of EZH2 in LIHC tissues. And a poor overall survival rate was detected in LIHC patients with high EZH2 expression. Moreover, EZH2 expression and cancer stage were identified as the independent risk factors affecting LIHC patients' prognosis. Conclusion In the present study, we conducted comprehensive bioinformatic analyses and built up a necroptosis-related prognostic signature containing four genes (ALDH2, EZH2, NDRG2, and PGAM5) for patients with LIHC, and this prognostic signature showed a medium to high predictive accuracy. And our study also identified a lncRNA TUG1/miR-26b-5p/EZH2 regulatory axis, which might be of great significance in LIHC progression. In addition, based on the data from our center, the result of qRT-PCR and survival analysis showed a higher mRNA level of EZH2 in LIHC tissues and an unfavorable prognosis in high EZH2 expression group, respectively.
Collapse
|
17
|
Cao YC, Shan SK, Guo B, Li CC, Li FXZ, Zheng MH, Xu QS, Wang Y, Lei LM, Tang KX, Ou-Yang WL, Duan JY, Wu YY, Ullah MHE, Zhou ZA, Xu F, Lin X, Wu F, Liao XB, Yuan LQ. Histone Lysine Methylation Modification and Its Role in Vascular Calcification. Front Endocrinol (Lausanne) 2022; 13:863708. [PMID: 35784574 PMCID: PMC9243330 DOI: 10.3389/fendo.2022.863708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 01/10/2023] Open
Abstract
Histone methylation is an epigenetic change mediated by histone methyltransferase, and has been connected to the beginning and progression of several diseases. The most common ailments that affect the elderly are cardiovascular and cerebrovascular disorders. They are the leading causes of death, and their incidence is linked to vascular calcification (VC). The key mechanism of VC is the transformation of vascular smooth muscle cells (VSMCs) into osteoblast-like phenotypes, which is a highly adjustable process involving a variety of complex pathophysiological processes, such as metabolic abnormalities, apoptosis, oxidative stress and signalling pathways. Many researchers have investigated the mechanism of VC and related targets for the prevention and treatment of cardiovascular and cerebrovascular diseases. Their findings revealed that histone lysine methylation modification may play a key role in the various stages of VC. As a result, a thorough examination of the role and mechanism of lysine methylation modification in physiological and pathological states is critical, not only for identifying specific molecular markers of VC and new therapeutic targets, but also for directing the development of new related drugs. Finally, we provide this review to discover the association between histone methylation modification and VC, as well as diverse approaches with which to investigate the pathophysiology of VC and prospective treatment possibilities.
Collapse
Affiliation(s)
- Ye-Chi Cao
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yue Duan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Hasnain Ehsan Ullah
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Ang Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Donyavi MH, Salehi-Mazandarani S, Nikpour P. Comprehensive competitive endogenous RNA network analysis reveals EZH2-related axes and prognostic biomarkers in hepatocellular carcinoma. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:286-294. [PMID: 35656182 PMCID: PMC9148400 DOI: 10.22038/ijbms.2022.61570.13623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022]
Abstract
Objectives Hepatocellular carcinoma (HCC) is a common and lethal type of cancer worldwide. The importance of non-coding RNAs such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) have been recognized in the development of HCC. In this study, we constructed a four-component competing endogenous RNA (ceRNA) network in HCC and evaluated prognostic values of the ceRNAs. Materials and Methods The expression profiles of lncRNAs, miRNAs, and mRNAs were retrieved from The Cancer Genome Atlas database. GSE94508 and GSE97332 studies from the Gene Expression Omnibus database were used to identify circRNAs expression profiles. A four-component ceRNA network was constructed based on differentially-expressed RNAs. Survival R package was utilized to identify potential prognostic biomarkers. Results A four-component ceRNA network including 295 edges and 239 nodes was constructed and enrichment analysis revealed important Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. A Protein-Protein Interaction network with 118 nodes and 301 edges was also established. The enhancer of zeste homolog 2 (EZH2) was the highest degree hub gene in the PPI network. Because of the significance of EZH2 in HCC, we presented its axes in the ceRNA network, which play important roles in HCC progression. Furthermore, ceRNAs were identified as potential prognostic biomarkers utilizing survival analysis. Conclusion Our study elucidates the role of ceRNAs and their regulatory interactions in the pathogenesis of HCC and identifies EZH2-related RNAs which may be utilized as novel therapeutic targets and prognostic biomarkers in the future.
Collapse
Affiliation(s)
- Mohammad Hossein Donyavi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sadra Salehi-Mazandarani
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan, Iran
| |
Collapse
|
19
|
Sun S, Yu F, Xu D, Zheng H, Li M. EZH2, a prominent orchestrator of genetic and epigenetic regulation of solid tumor microenvironment and immunotherapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188700. [PMID: 35217116 DOI: 10.1016/j.bbcan.2022.188700] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023]
Abstract
Immune checkpoint blockade (ICB) is regarded as a promising strategy for cancer therapy. The histone methyltransferase, Enhancer of Zeste Homolog 2 (EZH2), has been implicated in the carcinogenesis of numerous solid tumors. However, the underlying mechanism of EZH2 in cancer immunotherapeutic resistance remains unknown. EZH2 orchestrates the regulation of the innate and adaptive immune systems of the tumor microenvironment (TME). Profound epigenetic and transcriptomic changes induced by EZH2 in tumor cells and immune cells mobilize the elements of the TME, leading to immune-suppressive activity of solid tumors. In this review, we summarized the dynamic functions of EZH2 on the different components of the TME, including tumor cells, T cells, macrophages, natural killer cells, myeloid-derived suppressor cells, dendritic cells, fibroblasts, and mesenchymal stem cells. Several ongoing anti-tumor clinical trials using EZH2 inhibitors have also been included as translational perspectives. In conclusion, based combinational therapy to enable ICB could offer a survival benefit in patients with cancer.
Collapse
Affiliation(s)
- Shanshan Sun
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Cancer Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Feng Yu
- Cancer Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Danying Xu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Cancer Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haiyan Zheng
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Min Li
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America.
| |
Collapse
|
20
|
Clinical Value of EZH2 in Hepatocellular Carcinoma and Its Potential for Target Therapy. Medicina (B Aires) 2022; 58:medicina58020155. [PMID: 35208478 PMCID: PMC8877936 DOI: 10.3390/medicina58020155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Background and objectives: EZH2 is overexpressed in hepatocellular carcinoma (HCC) and is correlated with poor prognosis. However, its clinical significance and molecular mechanism have not been studied in HCC. In this study, clinical and prognostic values of EZH2 was studied using Total Cancer Genome Atlas (TCGA) data and then, these data were confirmed in Huh1 and HepG2 cell lines. Materials and Methods: We used the TCGA database from cBioPortal. In addition, we analyzed EZH2 mRNA levels in HCC cell lines and its correlation with STAT3 and EZH2. Results: According to TCGA, EZH2 had a prognostic value in various cancers, especially in HCC. Furthermore, EZH2 in HCC was correlated with N stage (p = 0.045) and alpha-fetoprotein (AFP) > 20 ng/mL (p < 0.01). However, a negative association between EZH2 and age (p = 0.027) was found. The overall survival result of HCC was significantly poorer in patients with high EZH2 expression. In addition, the recurrence rate was also significantly higher in patients with high expression of EZH2 than those with low expression (χ2 = 16.10, p < 0.001). EZH2 expression was negatively correlated with STAT3 expression among EZH2-associated genes (R = −0.163, p = 0.002). EZH2 expression level was down-regulated to 50% or less compared to the control group treated negative siRNA. MTT assays showed that EZH2-siRNA affected on the viability of HCC cell line significantly. Conclusions: In conclusion, the overexpression of EZH2 was an independent biomarker for poor outcomes of HCC. However, more in vivo studies are required to identify the downstream target genes in HCC to improve our understanding of the biological role of EZH2 in HCC.
Collapse
|
21
|
Wang J, Cong S, Wu H, He Y, Liu X, Sun L, Zhao X, Zhang G. Identification and Analysis of Potential Autophagy-Related Biomarkers in Endometriosis by WGCNA. Front Mol Biosci 2021; 8:743012. [PMID: 34790699 PMCID: PMC8591037 DOI: 10.3389/fmolb.2021.743012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Endometriosis is a serious gynecological disorder characterized by debilitating pain, infertility and the establishment of innervated endometriosis lesions outside the uterus. Early detection and accurate diagnosis are pivotal in endometriosis. The work screened autophagy-related genes (ATGs) as potential biomarkers to reveal new molecular subgroups for the early diagnosis of endometriosis. Materials and Methods: The gene lists of ATGs from five databases were integrated. Then, weighted gene co-expression network analysis (WGCNA) was used to map the genes to the gene profile of endometriosis samples in GSE51981 to obtain functional modules. GO and KEGG analyses were performed on the ATGs from the key modules. Differentially expressed ATGs were identified by the limma R package and further validated in the external datasets of GSE7305 and GSE135485. The DESeq2 R package was utilized to establish multifactorial network. Subsequently, one-way analysis of variance (ANOVA) was performed to identify new molecular subgroups. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to confirm the differential expression of hub ATGs, and the receiver operating characteristic (ROC) curve analysis and Spearman correlation analysis were applied to assess the diagnostic value of hub ATGs in 40 clinical samples and human primary endometrial stromal cells (ESCs). Results: We screened 4 key modules and 12 hub ATGs and found the key genes to be strongly correlated with endometriosis. The pathways of ATGs were mainly enriched in autophagy, apoptosis, ubiquitin-protein ligase binding, and MAPK signaling pathway. The expression levels of EZH2 (Enhancer of Zeste homolog 2) and RND3 (also known as RhoE) had statistically significant changes with higher values in the endometriosis group compared with the controls, both in the tissue samples and primary ESCs. Besides, they also showed higher specificity and sensitivity by the receiver operating characteristic analysis and Spearman correlation analysis for the diagnosis of endometriosis. The TF-mRNA-miRNA-lncRNA multifactorial network was successfully constructed. Four new molecular subgroups were identified, and we preliminarily showed the ability of IQCG to independently differentiate subgroups. Conclusion: EZH2 and RND3 could be candidate biomarkers for endometriosis, which would contribute to the early diagnosis and intervention in endometriosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanshan Cong
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Wu
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan He
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoli Liu
- Department of Gynecology, The Red Cross Center Hospital of Harbin, Harbin, China
| | - Liyuan Sun
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xibo Zhao
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Clinical Correlations of Polycomb Repressive Complex 2 in Different Tumor Types. Cancers (Basel) 2021; 13:cancers13133155. [PMID: 34202528 PMCID: PMC8267669 DOI: 10.3390/cancers13133155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary PRC2 (Polycomb repressive complex 2) is a catalytic multi-subunit complex involved in transcriptional repression through the methylation of lysine 27 at histone 3 (H3K27me1/2/3). Dysregulation of PRC2 has been linked to tumor development and progression. Here, we performed a comprehensive analysis of data in the genomic and transcriptomic (cBioPortal, KMplot) database portals of clinical tumor samples and evaluated clinical correlations of EZH2, SUZ12, and EED. Next, we developed an original Python application enabling the identification of genes cooperating with PRC2 in oncogenic processes for the analysis of the DepMap CRISPR knockout database. Our study identified cancer types that are most likely to be responsive to PRC2 inhibitors. By analyzing co-dependencies with other genes, this analysis also provides indications of prognostic biomarkers and new therapeutic regimens. Abstract PRC2 (Polycomb repressive complex 2) is an evolutionarily conserved protein complex required to maintain transcriptional repression. The core PRC2 complex includes EZH2, SUZ12, and EED proteins and methylates histone H3K27. PRC2 is known to contribute to carcinogenesis and several small molecule inhibitors targeting PRC2 have been developed. The present study aimed to identify the cancer types in which PRC2 targeting drugs could be beneficial. We queried genomic and transcriptomic (cBioPortal, KMplot) database portals of clinical tumor samples to evaluate clinical correlations of PRC2 subunit genes. EZH2, SUZ12, and EED gene amplification was most frequently found in prostate cancer, whereas lymphoid malignancies (DLBCL) frequently showed EZH2 mutations. In both cases, PRC2 alterations were associated with poor prognosis. Moreover, higher expression of PRC2 subunits was correlated with poor survival in renal and liver cancers as well as gliomas. Finally, we generated a Python application to analyze the correlation of EZH2/SUZ12/EED gene knockouts by CRISPR with the alterations detected in the cancer cell lines using DepMap data. As a result, we were able to identify mutations that correlated significantly with tumor cell sensitivity to PRC2 knockout, including SWI/SNF, COMPASS/COMPASS-like subunits and BCL2, warranting the investigation of these genes as potential markers of sensitivity to PRC2-targeting drugs.
Collapse
|
23
|
Upregulation of the ErbB family by EZH2 in hepatocellular carcinoma confers resistance to FGFR inhibitor. J Cancer Res Clin Oncol 2021; 147:2955-2968. [PMID: 34156519 PMCID: PMC8397639 DOI: 10.1007/s00432-021-03703-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/15/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC), the most common manifestation of liver cancer, is one of the leading causes of cancer-related mortality worldwide with limited treatment options. Infigratinib, a pan-FGFR inhibitor, has shown a potent antitumour effect in HCC. However, drug resistance is often observed in long-term treatment. In this study, we examined the potential feedback mechanism(s) leading to infigratinib and explored a combination therapy to overcome resistance in HCC. METHODS Patient-derived xenograft (PDX) tumours were subcutaneously implanted into SCID mice and were subsequently treated with infigratinib. Tumour growth was monitored over time, and tumour samples were subjected to immunohistochemistry and Western blotting. For drug combination studies, mice were treated with infigratinib and/or varlitinib. Gene overexpression and knockdown studies were conducted to investigate the relationship between EZH2 and ErbB activity in infigratinib resistance. RESULTS Infigratinib-resistant tumours exhibited higher levels of p-ErbB2 and p-ErbB3, concomitant with an increase in EZH2 expression. Gene overexpression and knockdown studies revealed that EZH2 directly regulates the levels of p-ErbB2 and p-ErbB3 in acquired resistance to infigratinib. The addition of varlitinib effectively overcame infigratinib resistance and prolonged the antitumour response, with minimal toxicity. CONCLUSION The upregulation of the ErbB family by EZH2 appears to contribute to infigratinib resistance. The combination of infigratinib and varlitinib showed a potent antitumour effect and did not result in additional toxicity, warranting further clinical investigation.
Collapse
|