1
|
Shim SM, Choi HR, Kwon SC, Kim HY, Sung KW, Jung EJ, Mun SR, Bae TH, Kim DH, Son YS, Jung CH, Lee J, Lee MJ, Park JW, Kwon YT. The Cys-N-degron pathway modulates pexophagy through the N-terminal oxidation and arginylation of ACAD10. Autophagy 2023; 19:1642-1661. [PMID: 36184612 PMCID: PMC10262816 DOI: 10.1080/15548627.2022.2126617] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022] Open
Abstract
In the N-degron pathway, N-recognins recognize cognate substrates for degradation via the ubiquitin (Ub)-proteasome system (UPS) or the autophagy-lysosome system (hereafter autophagy). We have recently shown that the autophagy receptor SQSTM1/p62 (sequestosome 1) is an N-recognin that binds the N-terminal arginine (Nt-Arg) as an N-degron to modulate autophagic proteolysis. Here, we show that the N-degron pathway mediates pexophagy, in which damaged peroxisomal fragments are degraded by autophagy under normal and oxidative stress conditions. This degradative process initiates when the Nt-Cys of ACAD10 (acyl-CoA dehydrogenase family, member 10), a receptor in pexophagy, is oxidized into Cys sulfinic (CysO2) or sulfonic acid (CysO3) by ADO (2-aminoethanethiol (cysteamine) dioxygenase). Under oxidative stress, the Nt-Cys of ACAD10 is chemically oxidized by reactive oxygen species (ROS). The oxidized Nt-Cys2 is arginylated by ATE1-encoded R-transferases, generating the RCOX N-degron. RCOX-ACAD10 marks the site of pexophagy via the interaction with PEX5 and binds the ZZ domain of SQSTM1/p62, recruiting LC3+-autophagic membranes. In mice, knockout of either Ate1 responsible for Nt-arginylation or Sqstm1/p62 leads to increased levels of peroxisomes. In the cells from patients with peroxisome biogenesis disorders (PBDs), characterized by peroxisomal loss due to uncontrolled pexophagy, inhibition of either ATE1 or SQSTM1/p62 was sufficient to recover the level of peroxisomes. Our results demonstrate that the Cys-N-degron pathway generates an N-degron that regulates the removal of damaged peroxisomal membranes along with their contents. We suggest that tannic acid, a commercially available drug on the market, has a potential to treat PBDs through its activity to inhibit ATE1 R-transferases.Abbreviations: ACAA1, acetyl-Coenzyme A acyltransferase 1; ACAD, acyl-Coenzyme A dehydrogenase; ADO, 2-aminoethanethiol (cysteamine) dioxygenase; ATE1, arginyltransferase 1; CDO1, cysteine dioxygenase type 1; ER, endoplasmic reticulum; LIR, LC3-interacting region; MOXD1, monooxygenase, DBH-like 1; NAC, N-acetyl-cysteine; Nt-Arg, N-terminal arginine; Nt-Cys, N-terminal cysteine; PB1, Phox and Bem1p; PBD, peroxisome biogenesis disorder; PCO, plant cysteine oxidase; PDI, protein disulfide isomerase; PTS, peroxisomal targeting signal; R-COX, Nt-Arg-CysOX; RNS, reactive nitrogen species; ROS, reactive oxygen species; SNP, sodium nitroprusside; UBA, ubiquitin-associated; UPS, ubiquitinproteasome system.
Collapse
Affiliation(s)
- Sang Mi Shim
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ha Rim Choi
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Soon Chul Kwon
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hye Yeon Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ki Woon Sung
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
- AUTOTAC Bio Inc., Seoul, Republic of Korea
| | - Eui Jung Jung
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Su Ran Mun
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Tae Hyun Bae
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dong Hyun Kim
- Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Korea
| | - Yeon Sung Son
- Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chan Hoon Jung
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jihoon Lee
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
- AUTOTAC Bio Inc., Seoul, Republic of Korea
| | - Min Jae Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yong Tae Kwon
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
- AUTOTAC Bio Inc., Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|