1
|
Timofeeva P, Finisguerra A, D’Argenio G, García AM, Carreiras M, Quiñones I, Urgesi C, Amoruso L. Switching off: disruptive TMS reveals distinct contributions of the posterior middle temporal gyrus and angular gyrus to bilingual speech production. Cereb Cortex 2024; 34:bhae188. [PMID: 38741267 PMCID: PMC11090997 DOI: 10.1093/cercor/bhae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
The role of the left temporoparietal cortex in speech production has been extensively studied during native language processing, proving crucial in controlled lexico-semantic retrieval under varying cognitive demands. Yet, its role in bilinguals, fluent in both native and second languages, remains poorly understood. Here, we employed continuous theta burst stimulation to disrupt neural activity in the left posterior middle-temporal gyrus (pMTG) and angular gyrus (AG) while Italian-Friulian bilinguals performed a cued picture-naming task. The task involved between-language (naming objects in Italian or Friulian) and within-language blocks (naming objects ["knife"] or associated actions ["cut"] in a single language) in which participants could either maintain (non-switch) or change (switch) instructions based on cues. During within-language blocks, cTBS over the pMTG entailed faster naming for high-demanding switch trials, while cTBS to the AG elicited slower latencies in low-demanding non-switch trials. No cTBS effects were observed in the between-language block. Our findings suggest a causal involvement of the left pMTG and AG in lexico-semantic processing across languages, with distinct contributions to controlled vs. "automatic" retrieval, respectively. However, they do not support the existence of shared control mechanisms within and between language(s) production. Altogether, these results inform neurobiological models of semantic control in bilinguals.
Collapse
Affiliation(s)
- Polina Timofeeva
- BCBL, Basque Center on Cognition, Brain, and Language (BCBL), Paseo Mikeletegi 69, 2nd floor, 20009 San Sebastian, Spain
- Universidad del País Vasco (UPV/EHU), Doctoral School, 48940, Sarriena s/n, Leioa, Spain
| | - Alessandra Finisguerra
- Scientific Institute, IRCCS E. Medea, Via Cialdini 29, 33037, Pasian di Prato, UD, Italy
| | - Giulia D’Argenio
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Via Margreth 3, 33100, Udine, Italy
| | - Adolfo M García
- Cognitive Neuroscience Center (CNC), University of San Andres, Vito Dumas 284, B1644 BID, Buenos Aires, Argentina
- Global Brain Health Institute (GBHI), University of California, Parnassus 513, CA 94143, San Franscisco, United States & Trinity College Dublin, College Green, Dublin 2, D02X9W9, Ireland
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Av. Libertador B. O'Higgins 3363, 9170022, Santiago de Chile, Chile
| | - Manuel Carreiras
- BCBL, Basque Center on Cognition, Brain, and Language (BCBL), Paseo Mikeletegi 69, 2nd floor, 20009 San Sebastian, Spain
- Universidad del País Vasco (UPV/EHU), Doctoral School, 48940, Sarriena s/n, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Ileana Quiñones
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
- Neurosciences Department, BioGipuzkoa Health Research Institute, Paseo Dr. Begiristain s/n, 20014, San Sebastian, Spain
| | - Cosimo Urgesi
- Scientific Institute, IRCCS E. Medea, Via Cialdini 29, 33037, Pasian di Prato, UD, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Via Margreth 3, 33100, Udine, Italy
| | - Lucia Amoruso
- BCBL, Basque Center on Cognition, Brain, and Language (BCBL), Paseo Mikeletegi 69, 2nd floor, 20009 San Sebastian, Spain
- Cognitive Neuroscience Center (CNC), University of San Andres, Vito Dumas 284, B1644 BID, Buenos Aires, Argentina
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| |
Collapse
|
2
|
Qu X, Wang Z, Cheng Y, Xue Q, Li Z, Li L, Feng L, Hartwigsen G, Chen L. Neuromodulatory effects of transcranial magnetic stimulation on language performance in healthy participants: Systematic review and meta-analysis. Front Hum Neurosci 2022; 16:1027446. [PMID: 36545349 PMCID: PMC9760723 DOI: 10.3389/fnhum.2022.1027446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background The causal relationships between neural substrates and human language have been investigated by transcranial magnetic stimulation (TMS). However, the robustness of TMS neuromodulatory effects is still largely unspecified. This study aims to systematically examine the efficacy of TMS on healthy participants' language performance. Methods For this meta-analysis, we searched PubMed, Web of Science, PsycINFO, Scopus, and Google Scholar from database inception until October 15, 2022 for eligible TMS studies on language comprehension and production in healthy adults published in English. The quality of the included studies was assessed with the Cochrane risk of bias tool. Potential publication biases were assessed by funnel plots and the Egger Test. We conducted overall as well as moderator meta-analyses. Effect sizes were estimated using Hedges'g (g) and entered into a three-level random effects model. Results Thirty-seven studies (797 participants) with 77 effect sizes were included. The three-level random effects model revealed significant overall TMS effects on language performance in healthy participants (RT: g = 0.16, 95% CI: 0.04-0.29; ACC: g = 0.14, 95% CI: 0.04-0.24). Further moderator analyses indicated that (a) for language tasks, TMS induced significant neuromodulatory effects on semantic and phonological tasks, but didn't show significance for syntactic tasks; (b) for cortical targets, TMS effects were not significant in left frontal, temporal or parietal regions, but were marginally significant in the inferior frontal gyrus in a finer-scale analysis; (c) for stimulation parameters, stimulation sites extracted from previous studies, rTMS, and intensities calibrated to the individual resting motor threshold are more prone to induce robust TMS effects. As for stimulation frequencies and timing, both high and low frequencies, online and offline stimulation elicited significant effects; (d) for experimental designs, studies adopting sham TMS or no TMS as the control condition and within-subject design obtained more significant effects. Discussion Overall, the results show that TMS may robustly modulate healthy adults' language performance and scrutinize the brain-and-language relation in a profound fashion. However, due to limited sample size and constraints in the current meta-analysis approach, analyses at a more comprehensive level were not conducted and results need to be confirmed by future studies. Systematic review registration [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=366481], identifier [CRD42022366481].
Collapse
Affiliation(s)
- Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zichao Wang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Qingwei Xue
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zimu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Lu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Liping Feng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| |
Collapse
|