1
|
Rudeeaneksin J, Bunchoo S, Phetsuksiri B, Srisungngam S, Khummin R, Thapa J, Nakajima C, Suzuki Y. The first insight into Mycobacterium tuberculosis complex isolates in the lower northern region in Thailand. Trans R Soc Trop Med Hyg 2024; 118:527-536. [PMID: 38554067 DOI: 10.1093/trstmh/trae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/21/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) remains an important infectious disease and different genotypes have been reported. This study aimed to investigate the genetic diversity and molecular epidemiology of TB in the lower northern region of Thailand, where genotyping data are limited. METHODS A total of 159 Mycobacterium tuberculosis complex (MTBC) isolates from this region were genotyped by spoligotyping and the major spoligotypes were further subdivided by the mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) method. RESULTS Spoligotyping identified 34 types and classified them into 14 clusters. East African-Indian (EAI) groups were the most frequent (44.7%), followed by Beijing (36.5%), with a higher prevalence of drug resistance. By 15-loci MIRU-VNTR typing, the major groups of the Beijing and EAI2_NTB were further differentiated into 44 and 21 subtypes forming 9 and 5 subclusters with cluster rates of 0.26 and 0.44, respectively. The Hunter-Gaston Discriminatory Index among the Beijing and EAI2_NTB groups were 0.987 and 0.931, respectively, indicating high diversity. CONCLUSIONS This is the first look at the MTBC genotypes in the lower northern region of Thailand, which could aid in understanding the distribution and potential spread of MTBC and Mycobacterium bovis in the target region to support TB control in Thailand.
Collapse
Affiliation(s)
- Janisara Rudeeaneksin
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Supranee Bunchoo
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Benjawan Phetsuksiri
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
- Medical Sciences Technical Office, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Sopa Srisungngam
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Ratchaneeporn Khummin
- Office of Disease Prevention and Control Region 2 Phitsanulok, Department of Disease Control, Ministry of Public Health, Phitsanulok 65000, Thailand
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| |
Collapse
|
2
|
Su F, Cao L, Ren X, Hu J, Tavengana G, Wu H, Zhou Y, Fu Y, Jiang M, Wen Y. The mutation rate of rpoB gene showed an upward trend with the increase of MIRU10, MIRU39 and QUB4156 repetitive number. BMC Genomics 2023; 24:26. [PMID: 36646991 PMCID: PMC9843906 DOI: 10.1186/s12864-023-09120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) is a frequently used typing method for identifying the Beijing genotype of Mycobacterium tuberculosis (Mtb), which is easily transformed into rifampicin (RIF) resistance. The RIF resistance of Mtb is considered to be highly related with the mutation of rpoB gene. Therefore, this study aimed to analyze the relationship between the repetitive number of MIRU loci and the mutation of rpoB gene. METHODS An open-source whole-genome sequencing data of Mtb was used to detect the mutation of rpoB gene and the repetitive number of MIRU loci by bioinformatics methods. Cochran-Armitage analysis was performed to analyze the trend of the rpoB gene mutation rate and the repetitive number of MIRU loci. RESULTS Among 357 rifampicin-resistant tuberculosis (RR-TB), 304 strains with mutated rpoB genes were detected, and 6 of 67 rifampicin susceptible strains were detected mutations. The rpoB gene mutational rate showed an upward trend with the increase of MIRU10, MIRU39, QUB4156 and MIRU16 repetitive number, but only the repetitive number of MIRU10, MRIU39 and QUB4156 were risk factors for rpoB gene mutation. The Hunter-Gaston discriminatory index (HGDI) of MIRU10 (0.65) and QUB4156 (0.62) was high in the overall sample, while MIRU39 (0.39) and MIRU16 (0.43) showed a moderate discriminatory Power. CONCLUSION The mutation rate of rpoB gene increases with the addition of repetitive numbers of MIRU10, QUB4156 and MIRU39 loci.
Collapse
Affiliation(s)
- Fan Su
- grid.443626.10000 0004 1798 4069School of Public Health, Wannan Medical College, Wuhu, Anhui Province China
| | - Lei Cao
- grid.443626.10000 0004 1798 4069School of Public Health, Wannan Medical College, Wuhu, Anhui Province China
| | - Xia Ren
- grid.443626.10000 0004 1798 4069School of Public Health, Wannan Medical College, Wuhu, Anhui Province China
| | - Jian Hu
- grid.443626.10000 0004 1798 4069School of Public Health, Wannan Medical College, Wuhu, Anhui Province China
| | - Grace Tavengana
- grid.443626.10000 0004 1798 4069School of Public Health, Wannan Medical College, Wuhu, Anhui Province China
| | - Huan Wu
- grid.443626.10000 0004 1798 4069School of Laboratory Medicine, Wannan Medical College, Wuhu, Anhui Province China
| | - Yumei Zhou
- grid.443626.10000 0004 1798 4069School of Public Health, Wannan Medical College, Wuhu, Anhui Province China
| | - Yuhan Fu
- grid.443626.10000 0004 1798 4069School of Public Health, Wannan Medical College, Wuhu, Anhui Province China
| | - Mingfei Jiang
- grid.443626.10000 0004 1798 4069School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui Province China
| | - Yufeng Wen
- grid.443626.10000 0004 1798 4069School of Public Health, Wannan Medical College, Wuhu, Anhui Province China
| |
Collapse
|
3
|
Qiu B, Tao B, Liu Q, Li Z, Song H, Tian D, Wu J, Wu Z, Zhan M, Lu W, Wang J. A Prospective Cohort Study on the Prevalent and Recurrent Tuberculosis Isolates Using the MIRU-VNTR Typing. Front Med (Lausanne) 2021; 8:685368. [PMID: 34595184 PMCID: PMC8476766 DOI: 10.3389/fmed.2021.685368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
The study aims to describe the clustering characteristics of Mycobacterium tuberculosis (M.tb) strains circulating in eastern China and determine the ratio of relapse and reinfection in recurrent patients. We recruited sputum smear-positive pulmonary tuberculosis cases from five cities of Jiangsu Province, China, during August 2013 and December 2015. Patients were followed for the treatment outcomes and recurrence based on a cohort design. M.tb strains were isolated and genotyped using the 12-locus MIRU-VNTR. The Beijing family was identified by the extended Region of Difference (RD) analysis. The Hunter-Gaston Discriminatory Index (HGDI) was used to judge the resolution ability of MIRU-VNTR. The odds ratio (OR) together with 95% confidence interval (CI) were used to estimate the strength of association. We performed a cluster analysis on 2098 M.tb isolates and classified them into 545 genotypes and five categories (I, 0.19%; II, 0.43%; III, 3.34%; IV, 77.46%; V, 18.59%). After adjusting for potential confounders, the Beijing family genotype (OR = 118.63, 95% CI: 79.61–176.79, P = 0.001) was significantly related to the dominant strain infections. Patients infected with non-dominant strains had a higher risk of the pulmonary cavity (OR = 1.39, 95% CI: 1.01–1.91, P = 0.046). Among 37 paired recurrent cases, 22 (59.46%) were determined as endogenous reactivation, and 15 (40.54%) were exogenous reinfection. The type of M.tb strains prevalent in Jiangsu Province is relatively single. Beijing family strains infection is dominant in local tuberculosis cases. Endogenous reactivation appears to be a major cause of recurrent tuberculosis in Eastern China. This finding emphasizes the importance of case follow-up and monitoring after the completion of antituberculosis treatment.
Collapse
Affiliation(s)
- Beibei Qiu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Bilin Tao
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiao Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Zhongqi Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huan Song
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dan Tian
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jizhou Wu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhuchao Wu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mengyao Zhan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Lu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Jianming Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|