1
|
Efron A, Brozzi A, Biolchi A, Bodini M, Giuliani M, Guidotti S, Lorenzo F, Moscoloni MA, Muzzi A, Nocita F, Pizza M, Rappuoli R, Tomei S, Vidal G, Vizzotti C, Campos J, Sorhouet Pereira C. Genetic characterization and estimated 4CMenB vaccine strain coverage of 284 Neisseria meningitidis isolates causing invasive meningococcal disease in Argentina in 2010-2014. Hum Vaccin Immunother 2024; 20:2378537. [PMID: 39037011 DOI: 10.1080/21645515.2024.2378537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024] Open
Abstract
Meningococcal (Neisseria meningitidis) serogroup B (MenB) strain antigens are diverse and a limited number of strains can be evaluated using the human serum bactericidal antibody (hSBA) assay. The genetic Meningococcal Antigen Typing System (gMATS) was developed to predict the likelihood of coverage for large numbers of isolates by the 4CMenB vaccine, which includes antigens Neisseria adhesin A (NadA), Neisserial Heparin-Binding Antigen (NHBA), factor H-binding protein (fHbp), and Porin A (PorA). In this study, we characterized by whole-genome analyses 284 invasive MenB isolates collected from 2010 to 2014 by the Argentinian National Laboratories Network (52-61 isolates per year). Strain coverage was estimated by gMATS on all isolates and by hSBA assay on 74 randomly selected isolates, representative of the whole panel. The four most common clonal complexes (CCs), accounting for 81.3% of isolates, were CC-865 (75 isolates, 26.4%), CC-32 (59, 20.8%), CC-35 (59, 20.8%), and CC-41/44 (38, 13.4%). Vaccine antigen genotyping showed diversity. The most prevalent variants/peptides were fHbp variant 2, NHBA peptides 24, 21, and 2, and PorA variable region 2 profiles 16-36 and 14. The nadA gene was present in 66 (23.2%) isolates. Estimated strain coverage by hSBA assay showed 78.4% of isolates were killed by pooled adolescent sera, and 51.4% and 64.9% (based on two different thresholds) were killed by pooled infant sera. Estimated coverage by gMATS (61.3%; prediction interval: 55.5%, 66.7%) was consistent with the infant hSBA assay results. Continued genomic surveillance is needed to evaluate the persistence of major MenB CCs in Argentina.
Collapse
Affiliation(s)
- Adriana Efron
- Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | | | | | | | | | | | - Federico Lorenzo
- Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - María Alicia Moscoloni
- Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | | | | | | | | | | | | | - Carla Vizzotti
- National Ministry of Health (2010-2015 and 2019-2023), Buenos Aires, Argentina
| | - Josefina Campos
- Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Cecilia Sorhouet Pereira
- Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| |
Collapse
|
2
|
Rivacoba MC, Villena R, Hormazabal JC, Benadof D, Payá E, Valdivieso F, Canals A, Arteta-Acosta C, Santolaya ME. Hypervirulent Strains of Neisseria meningitidis and Clinical Manifestations in Children With Invasive Meningococcal Disease. Pediatr Infect Dis J 2023; Publish Ahead of Print:00006454-990000000-00470. [PMID: 37267065 DOI: 10.1097/inf.0000000000003965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
BACKGROUND Hypervirulent clonal complex (cc) have been associated with higher incidence and case fatality rate of invasive meningococcal disease (IMD). The aim of this study was to describe the clinical manifestations of the hypervirulent cc of meningococcus in children. METHODS Retrospective study in patients hospitalized by IMD microbiologically confirmed at three children's tertiary health care centers in Santiago, Chile, between 2010 and 2018. Demographic, clinical information and determination of the cc and factor H binding protein (fHbp) alleles were performed. RESULTS In total 93 cases were evaluated, sequence typing was available for 91 cases, and 87 (95.6%) had a cc assigned; 63.7% were MenW and 31.8% MenB. The median age was 9 months, 67% were male and 18.7% had any comorbidity. A 26.4% presented neurological deficit, 25.3% petechiae and 20% diarrhea. Sixty-seven percent were admitted to the pediatric intensive care unit (PICU) and the case fatality rate was 9.9%. Regarding cc and fHbp alleles, ST11, ST41/44 and allele 22 were the most frequently identified, with 63.7%, 19.8% and 72.5%, respectively. We found statistically significant differences between the cc and presence of petechiae, diagnosis of meningococcemia plus meningitis, admission and days in PICU and advanced support. Allele 22 for fHbp was associated with the absence of petechiae, low suspicion of IMD, less diagnosis of meningitis+meningococcemia, PICU admission, advanced support and adrenal insufficiency. CONCLUSION Epidemiological and microbiological surveillance of IMD should integrate clinical and laboratory components, including molecular and genetic characterization, to enrich the dynamic understanding of the clinical evolution of IMD.
Collapse
Affiliation(s)
- María Carolina Rivacoba
- From the Infectious Diseases Unit, Hospital de niños Dr. Exequiel González Cortés, Santiago, Chile
| | - Rodolfo Villena
- From the Infectious Diseases Unit, Hospital de niños Dr. Exequiel González Cortés, Santiago, Chile
- Department of Pediatrics, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Dona Benadof
- Department of Pediatrics, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Microbiology Laboratory, Hospital de niños Dr Roberto Del Río, Santiago, Chile
| | - Ernesto Payá
- From the Infectious Diseases Unit, Hospital de niños Dr. Exequiel González Cortés, Santiago, Chile
- Department of Pediatrics, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisca Valdivieso
- Infectious Diseases Unit, Hospital de niños Dr Luis Calvo Mackenna, Santiago, Chile
| | - Andrea Canals
- Academic Direction, Clínica Santa Maria, Santiago, Chile
- Biostatistics Program, School of Public Health, Universidad de Chile, Santiago, Chile
| | - Cindy Arteta-Acosta
- Department of Pediatrics, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Infectious Diseases Unit, Hospital de niños Dr Luis Calvo Mackenna, Santiago, Chile
| | - María Elena Santolaya
- Department of Pediatrics, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Infectious Diseases Unit, Hospital de niños Dr Luis Calvo Mackenna, Santiago, Chile
| |
Collapse
|
3
|
Findlow J, Borrow R, Stephens DS, Liberator P, Anderson AS, Balmer P, Jodar L. Correlates of protection for meningococcal surface protein vaccines; current approaches for the determination of breadth of coverage. Expert Rev Vaccines 2022; 21:753-769. [PMID: 35469524 DOI: 10.1080/14760584.2022.2064850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The two currently licensed surface protein non capsular meningococcal serogroup B (MenB) vaccines both have the purpose of providing broad coverage against diverse MenB strains. However, the different antigen compositions and approaches used to assess breadth of coverage currently make direct comparisons complex. AREAS COVERED In the second of two companion papers, we comprehensively review the serology and factors influencing breadth of coverage assessments for two currently licensed MenB vaccines. EXPERT OPINION Surface protein MenB vaccines were developed using different approaches, resulting in unique formulations and thus their breadth of coverage. The surface proteins used as vaccine antigens can vary among meningococcal strains due to gene presence/absence, sequence diversity and differences in protein expression. Assessment of the breadth of coverage provided by vaccines is influenced by the ability to induce cross-reactive functional immune responses to sequence diverse protein variants; the characteristics of the circulating invasive strains from specific geographic locations; methodological differences in the immunogenicity assays; differences in human immune responses between individuals; and the maintenance of protective antibody levels over time. Understanding the proportion of meningococcal strains which are covered by the two licensed vaccines is important in understanding protection from disease and public health use.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Ltd, Tadworth, UK
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - David S Stephens
- Woodruff Health Sciences Center, Emory University, Atlanta, Georgia, USA
| | - Paul Liberator
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, USA
| | | | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Luis Jodar
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|