1
|
Baig MMJ, Wang YL, Chung SH, Stepanyants A. Normalized level set model for segmentation of low-contrast objects in 2- and 3- dimensional images. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.574651. [PMID: 38293159 PMCID: PMC10827125 DOI: 10.1101/2024.01.12.574651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Analyses of biomedical images often rely on accurate segmentation of structures of interest. Traditional segmentation methods based on thresholding, watershed, fast marching, and level set perform well in high-contrast images containing structures of similar intensities. However, such methods can under-segment or miss entirely low-intensity objects on noisy backgrounds. Machine learning segmentation methods promise superior performance but require large training datasets of labeled images which are difficult to create, particularly in 3D. Here, we propose an algorithm based on the Local Binary Fitting (LBF) level set method, specifically designed to improve the segmentation of low-contrast structures.
Collapse
Affiliation(s)
- Mirza M Junaid Baig
- Department of Physics, Northeastern University, 360 Huntington Ave., Boston, MA, USA 02115
- Department of Bioengineering, Northeastern University, 360 Huntington Ave., Boston, MA, USA 02115
| | - Yao L Wang
- Department of Bioengineering, Northeastern University, 360 Huntington Ave., Boston, MA, USA 02115
| | - Samuel H Chung
- Department of Bioengineering, Northeastern University, 360 Huntington Ave., Boston, MA, USA 02115
| | - Armen Stepanyants
- Department of Physics, Northeastern University, 360 Huntington Ave., Boston, MA, USA 02115
| |
Collapse
|
2
|
Wang YL, Grooms NW, Jaklitsch EL, Schulting LG, Chung SH. High-throughput submicron-resolution microscopy of Caenorhabditis elegans populations under strong immobilization by cooling cultivation plates. iScience 2023; 26:105999. [PMID: 36794150 PMCID: PMC9923163 DOI: 10.1016/j.isci.2023.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/19/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Despite its profound impact on biology, high-resolution in vivo microscopy largely remains low throughput because current immobilization techniques require substantial manual effort. We implement a simple cooling approach to immobilize entire populations of the nematode Caenorhabditis elegans directly on their cultivation plates. Counterintuitively, warmer temperatures immobilize animals much more effectively than the colder temperatures of prior studies and enable clear submicron-resolution fluorescence imaging, which is challenging under most immobilization techniques. We demonstrate 64× z-stack and time-lapse imaging of neurons in adults and embryos without motion blur. Compared to standard azide immobilization, cooling immobilization reduces the animal preparation and recovery time by >98%, significantly increasing experimental speed. High-throughput imaging of a fluorescent proxy in cooled animals and direct laser axotomy indicate that the transcription factor CREB underlies lesion conditioning. By obviating individual animal manipulation, our approach could empower automated imaging of large populations within standard experimental setups and workflows.
Collapse
Affiliation(s)
- Yao L. Wang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Noa W.F. Grooms
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Erik L. Jaklitsch
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | | | - Samuel H. Chung
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
3
|
Zhou P, Juanes MA. Confocal Laser Scanning Imaging of Cell Junctions in Human Colon Cancer Cells. Methods Mol Biol 2023; 2650:245-259. [PMID: 37310637 DOI: 10.1007/978-1-0716-3076-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The intestinal epithelium is formed by a single layer of cells. These cells originate from self-renewal stem cells that give rise to various lineages of cells: Paneth, transit-amplifying, and fully differentiated cells (as enteroendocrine, goblet cells, and enterocytes). Enterocytes, also known as absorptive epithelial cells, are the most abundant cell type in the gut. Enterocytes have the potential to polarize as well as form tight junctions with neighbor cells which altogether serve to ensure both the absorption of "good" substances into the body and the blockage of "bad" substances, among other functions. Culture cell models such as the Caco-2 cell line have been proved to be valuable tools to study the fascinating functions of the intestine. In this chapter we outline some experimental procedures to grow, differentiate, and stain intestinal Caco-2 cells, as well as image them using two modes of confocal laser scanning microscopy.
Collapse
Affiliation(s)
- Peixun Zhou
- School of Health and Life Science, Teesside University, Middlesbrough, UK
- National Horizons Centre, Teesside University, Darlington, UK
| | - M Angeles Juanes
- School of Health and Life Science, Teesside University, Middlesbrough, UK.
- National Horizons Centre, Teesside University, Darlington, UK.
- Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
4
|
Wang YL, Grooms NWF, Chung SH. Transverse and axial resolution of femtosecond laser ablation. JOURNAL OF BIOPHOTONICS 2022; 15:e202200042. [PMID: 35583201 DOI: 10.1002/jbio.202200042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Femtosecond lasers are capable of precise ablation that produces surgical dissections in vivo. The transverse and axial resolutions of the laser damage inside the bulk are important parameters of ablation. The transverse resolution is routinely quantified; but the axial resolution is more difficult to measure and is less commonly performed. Using a 1040-nm, 400-fs pulsed laser, and a 1.4-NA objective, we performed ablation inside agarose and glass, producing clear, and persistent damage spots. Near the ablation threshold of both media, we found that the axial resolution is similar to the transverse resolution. We also ablated neuron cell bodies and fibers in Caenorhabditis elegans and demonstrate submicrometer resolution in both the transverse and axial directions, consistent with our results in agarose and glass. Using simple yet rigorous methods, we define the resolution of laser ablation in transparent media along all directions.
Collapse
Affiliation(s)
- Yao L Wang
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Noa W F Grooms
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Samuel H Chung
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Dyer L, Parker A, Paphiti K, Sanderson J. Lightsheet Microscopy. Curr Protoc 2022; 2:e448. [PMID: 35838628 DOI: 10.1002/cpz1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Laura Dyer
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Keanu Paphiti
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
6
|
Patel A, Balis UGJ, Cheng J, Li Z, Lujan G, McClintock DS, Pantanowitz L, Parwani A. Contemporary Whole Slide Imaging Devices and Their Applications within the Modern Pathology Department: A Selected Hardware Review. J Pathol Inform 2021; 12:50. [PMID: 35070479 PMCID: PMC8721869 DOI: 10.4103/jpi.jpi_66_21] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Digital pathology (DP) has disrupted the practice of traditional pathology, including applications in education, research, and clinical practice. Contemporary whole slide imaging (WSI) devices include technological advances that help address some of the challenges facing modern pathology, such as increasing workloads with fewer subspecialized pathologists, expanding integrated delivery networks with global reach, and greater customization when working up cases for precision medicine. This review focuses on integral hardware components of 43 market available and soon-to-be released digital WSI devices utilized throughout the world. Components such as objective lens type and magnification, scanning camera, illumination, and slide capacity were evaluated with respect to scan time, throughput, accuracy of scanning, and image quality. This analysis of assorted modern WSI devices offers essential, valuable information for successfully selecting and implementing a digital WSI solution for any given pathology practice.
Collapse
Affiliation(s)
- Ankush Patel
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | | | - Jerome Cheng
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Zaibo Li
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Giovanni Lujan
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | | | - Liron Pantanowitz
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anil Parwani
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|