1
|
Diaz BP, Zelzion E, Halsey K, Gaube P, Behrenfeld M, Bidle KD. Marine phytoplankton downregulate core photosynthesis and carbon storage genes upon rapid mixed layer shallowing. THE ISME JOURNAL 2023:10.1038/s41396-023-01416-x. [PMID: 37156837 DOI: 10.1038/s41396-023-01416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Marine phytoplankton are a diverse group of photoautotrophic organisms and key mediators in the global carbon cycle. Phytoplankton physiology and biomass accumulation are closely tied to mixed layer depth, but the intracellular metabolic pathways activated in response to changes in mixed layer depth remain less explored. Here, metatranscriptomics was used to characterize the phytoplankton community response to a mixed layer shallowing (from 233 to 5 m) over the course of two days during the late spring in the Northwest Atlantic. Most phytoplankton genera downregulated core photosynthesis, carbon storage, and carbon fixation genes as the system transitioned from a deep to a shallow mixed layer and shifted towards catabolism of stored carbon supportive of rapid cell growth. In contrast, phytoplankton genera exhibited divergent transcriptional patterns for photosystem light harvesting complex genes during this transition. Active virus infection, taken as the ratio of virus to host transcripts, increased in the Bacillariophyta (diatom) phylum and decreased in the Chlorophyta (green algae) phylum upon mixed layer shallowing. A conceptual model is proposed to provide ecophysiological context for our findings, in which integrated light limitation and lower division rates during transient deep mixing are hypothesized to disrupt resource-driven, oscillating transcript levels related to photosynthesis, carbon fixation, and carbon storage. Our findings highlight shared and unique transcriptional response strategies within phytoplankton communities acclimating to the dynamic light environment associated with transient deep mixing and shallowing events during the annual North Atlantic bloom.
Collapse
Affiliation(s)
- Ben P Diaz
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, 08901, USA
- Biotechnology & Bioengineering, Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA
| | - Ehud Zelzion
- Office of Advanced Research Computing, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kimberly Halsey
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Peter Gaube
- Applied Physics Laboratory, University of Washington, Seattle, WA, 98105, USA
| | - Michael Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Kay D Bidle
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
2
|
Light-response in two clonal strains of the haptophyte Tisochrysis lutea: Evidence for different photoprotection strategies. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
3
|
Broddrick JT, Ware MA, Jallet D, Palsson BO, Peers G. Integration of physiologically relevant photosynthetic energy flows into whole genome models of light-driven metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:603-621. [PMID: 36053127 PMCID: PMC9826171 DOI: 10.1111/tpj.15965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 06/01/2023]
Abstract
Characterizing photosynthetic productivity is necessary to understand the ecological contributions and biotechnology potential of plants, algae, and cyanobacteria. Light capture efficiency and photophysiology have long been characterized by measurements of chlorophyll fluorescence dynamics. However, these investigations typically do not consider the metabolic network downstream of light harvesting. By contrast, genome-scale metabolic models capture species-specific metabolic capabilities but have yet to incorporate the rapid regulation of the light harvesting apparatus. Here, we combine chlorophyll fluorescence parameters defining photosynthetic and non-photosynthetic yield of absorbed light energy with a metabolic model of the pennate diatom Phaeodactylum tricornutum. This integration increases the model predictive accuracy regarding growth rate, intracellular oxygen production and consumption, and metabolic pathway usage. Through the quantification of excess electron transport, we uncover the sequential activation of non-radiative energy dissipation processes, cross-compartment electron shuttling, and non-photochemical quenching as the rapid photoacclimation strategy in P. tricornutum. Interestingly, the photon absorption thresholds that trigger the transition between these mechanisms were consistent at low and high incident photon fluxes. We use this understanding to explore engineering strategies for rerouting cellular resources and excess light energy towards bioproducts in silico. Overall, we present a methodology for incorporating a common, informative data type into computational models of light-driven metabolism and show its utilization within the design-build-test-learn cycle for engineering of photosynthetic organisms.
Collapse
Affiliation(s)
- Jared T. Broddrick
- Division of Biological SciencesUniversity of California, San DiegoLa JollaCA92093USA
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
- Space Biosciences Research BranchNASA Ames Research CenterMoffett FieldCA94035USA
| | - Maxwell A. Ware
- Department of BiologyColorado State UniversityFort CollinsCO80524USA
| | - Denis Jallet
- Department of BiologyColorado State UniversityFort CollinsCO80524USA
| | - Bernhard O. Palsson
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Graham Peers
- Department of BiologyColorado State UniversityFort CollinsCO80524USA
| |
Collapse
|
4
|
Pokora W, Tułodziecki S, Dettlaff-Pokora A, Aksmann A. Cross Talk between Hydrogen Peroxide and Nitric Oxide in the Unicellular Green Algae Cell Cycle: How Does It Work? Cells 2022; 11:cells11152425. [PMID: 35954269 PMCID: PMC9368121 DOI: 10.3390/cells11152425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
The regulatory role of some reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as hydrogen peroxide or nitric oxide, has been demonstrated in some higher plants and algae. Their involvement in regulation of the organism, tissue and single cell development can also be seen in many animals. In green cells, the redox potential is an important photosynthesis regulatory factor that may lead to an increase or decrease in growth rate. ROS and RNS are important signals involved in the regulation of photoautotrophic growth that, in turn, allow the cell to attain the commitment competence. Both hydrogen peroxide and nitric oxide are directly involved in algal cell development as the signals that regulate expression of proteins required for completing the cell cycle, such as cyclins and cyclin-dependent kinases, or histone proteins and E2F complex proteins. Such regulation seems to relate to the direct interaction of these signaling molecules with the redox-sensitive transcription factors, but also with regulation of signaling pathways including MAPK, G-protein and calmodulin-dependent pathways. In this paper, we aim to elucidate the involvement of hydrogen peroxide and nitric oxide in algal cell cycle regulation, considering the role of these molecules in higher plants. We also evaluate the commercial applicability of this knowledge. The creation of a simple tool, such as a precisely established modification of hydrogen peroxide and/or nitric oxide at the cellular level, leading to changes in the ROS-RNS cross-talk network, can be used for the optimization of the efficiency of algal cell growth and may be especially important in the context of increasing the role of algal biomass in science and industry. It could be a part of an important scientific challenge that biotechnology is currently focused on.
Collapse
Affiliation(s)
- Wojciech Pokora
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
- Correspondence:
| | - Szymon Tułodziecki
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
| |
Collapse
|
5
|
Grzesiuk M, Pietrzak B, Wacker A, Pijanowska J. Photosynthetic activity in both algae and cyanobacteria changes in response to cues of predation. FRONTIERS IN PLANT SCIENCE 2022; 13:907174. [PMID: 35958198 PMCID: PMC9358279 DOI: 10.3389/fpls.2022.907174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
A plethora of adaptive responses to predation has been described in microscopic aquatic producers. Although the energetic costs of these responses are expected, with their consequences going far beyond an individual, their underlying molecular and metabolic mechanisms are not fully known. One, so far hardly considered, is if and how the photosynthetic efficiency of phytoplankton might change in response to the predation cues. Our main aim was to identify such responses in phytoplankton and to detect if they are taxon-specific. We exposed seven algae and seven cyanobacteria species to the chemical cues of an efficient consumer, Daphnia magna, which was fed either a green alga, Acutodesmus obliquus, or a cyanobacterium, Synechococcus elongatus (kairomone and alarm cues), or was not fed (kairomone alone). In most algal and cyanobacterial species studied, the quantum yield of photosystem II increased in response to predator fed cyanobacterium, whereas in most of these species the yield did not change in response to predator fed alga. Also, cyanobacteria tended not to respond to a non-feeding predator. The modal qualitative responses of the electron transport rate were similar to those of the quantum yield. To our best knowledge, the results presented here are the broadest scan of photosystem II responses in the predation context so far.
Collapse
Affiliation(s)
- Małgorzata Grzesiuk
- Department of Hydrobiology, Faculty of Biology, Institute of Functional Biology and Ecology, University of Warsaw Biological and Chemical Research Centre, Warszawa, Poland
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warszawa, Poland
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Barbara Pietrzak
- Department of Hydrobiology, Faculty of Biology, Institute of Functional Biology and Ecology, University of Warsaw Biological and Chemical Research Centre, Warszawa, Poland
| | - Alexander Wacker
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Animal Ecology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Joanna Pijanowska
- Department of Hydrobiology, Faculty of Biology, Institute of Functional Biology and Ecology, University of Warsaw Biological and Chemical Research Centre, Warszawa, Poland
| |
Collapse
|
6
|
Maltsev Y, Maltseva K, Kulikovskiy M, Maltseva S. Influence of Light Conditions on Microalgae Growth and Content of Lipids, Carotenoids, and Fatty Acid Composition. BIOLOGY 2021; 10:1060. [PMID: 34681157 PMCID: PMC8533579 DOI: 10.3390/biology10101060] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023]
Abstract
Microalgae are a valuable natural resource for a variety of value-added products. The growth of microalgae is determined by the impact of many factors, but, from the point of view of the implementation of autotrophic growth, light is of primary importance. This work presents an overview of the influence of light conditions on the growth of microalgae, the content of lipids, carotenoids, and the composition of fatty acids in their biomass, taking into account parameters such as the intensity, duration of lighting, and use of rays of different spectral composition. The optimal light intensity for the growth of microalgae lies in the following range: 26-400 µmol photons m-2 s-1. An increase in light intensity leads to an activation of lipid synthesis. For maximum lipid productivity, various microalgae species and strains need lighting of different intensities: from 60 to 700 µmol photons m-2 s-1. Strong light preferentially increases the triacylglyceride content. The intensity of lighting has a regulating effect on the synthesis of fatty acids, carotenoids, including β-carotene, lutein and astaxanthin. In intense lighting conditions, saturated fatty acids usually accumulate, as well as monounsaturated ones, and the number of polyunsaturated fatty acids decreases. Red as well as blue LED lighting improves the biomass productivity of microalgae of various taxonomic groups. Changing the duration of the photoperiod, the use of pulsed light can stimulate microalgae growth, the production of lipids, and carotenoids. The simultaneous use of light and other stresses contributes to a stronger effect on the productivity of algae.
Collapse
Affiliation(s)
- Yevhen Maltsev
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia; (M.K.); (S.M.)
| | - Kateryna Maltseva
- Faculty of Chemistry and Biology, Bogdan Khmelnitsky Melitopol State Pedagogical University, 72312 Melitopol, Ukraine;
| | - Maxim Kulikovskiy
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia; (M.K.); (S.M.)
| | - Svetlana Maltseva
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia; (M.K.); (S.M.)
| |
Collapse
|
7
|
Bi R, Cao Z, Ismar-Rebitz SMH, Sommer U, Zhang H, Ding Y, Zhao M. Responses of Marine Diatom-Dinoflagellate Competition to Multiple Environmental Drivers: Abundance, Elemental, and Biochemical Aspects. Front Microbiol 2021; 12:731786. [PMID: 34526982 PMCID: PMC8435848 DOI: 10.3389/fmicb.2021.731786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Ocean-related global change has strongly affected the competition between key marine phytoplankton groups, such as diatoms and dinoflagellates, especially with the deleterious consequency of the increasing occurrence of harmful algal blooms. The dominance of diatoms generally shifts toward that of dinoflagellates in response to increasing temperature and reduced nutrient availability; however, contradictory findings have also been observed in certain sea areas. A key challenge in ecology and biogeochemistry is to quantitatively determine the effects of multiple environmental factors on the diatom-dinoflagellate community and the related changes in elemental and biochemical composition. Here, we test the interplay between temperature, nutrient concentrations and their ratios on marine diatom-dinoflagellate competition and chemical composition using bi-algal competition experiments. The ubiquitous diatom Phaeodactylum tricornutum and dinoflagellate Prorocentrum minimum were cultivated semi-continuously, provided with different N and P concentrations (three different levels) and ratios (10:1, 24:1, and 63:1 molar ratios) under three temperatures (12, 18, and 24°C). The responses of diatom-dinoflagellate competition were analyzed by a Lotka-Volterra model and quantified by generalized linear mixed models (GLMMs) and generalized additive models (GAMs). The changes in nutrient concentrations significantly affected diatom-dinoflagellate competition, causing a competitive superiority of the diatoms at high nutrient concentrations, independent of temperature and N:P supply ratios. Interestingly, the effect amplitude of nutrient concentrations varied with different temperatures, showing a switch back toward a competitive superiority of the dinoflagellates at the highest temperature and at very high nutrient concentrations. The ratios of particulate organic nitrogen to phosphorus showed significant negative correlations with increasing diatoms/dinoflagellates ratios, while lipid biomarkers (fatty acids and sterols) correlated positively with increasing diatoms/dinoflagellates ratios over the entire ranges of temperature, N and P concentrations and N:P ratios. Our results indicate that the integration of phytoplankton community structure and chemical composition provides an important step forward to quantitatively understand and predict how phytoplankton community changes affect ecosystem functions and biogeochemical cycles in the ocean.
Collapse
Affiliation(s)
- Rong Bi
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhong Cao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Ulrich Sommer
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Hailong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yang Ding
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Meixun Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|