1
|
Chakrabarti R, Lin S, Wang H, Cecchini M. SMARCA4-Deficient Undifferentiated Tumor of the Esophagus: Diagnostic Pitfalls in Immunohistochemical Profiles. Int J Surg Pathol 2024; 32:1292-1302. [PMID: 38497146 PMCID: PMC11440787 DOI: 10.1177/10668969241228290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 03/19/2024]
Abstract
SMARCA4-deficient undifferentiated tumors (SMARCA4-UT) are a newly described entity and are typically seen in the thoracic cavity. However, these tumors have been described in other body sites, including the esophagus. These tumors are rare, aggressive neoplasms, characterized by the loss of protein product of SMARCA4 (Brahma-related gene-1) and the preservation of INI1 (SMARCB1) expression. Here, we present two tumors of SMARCA4-UT of the esophagus with its microscopic appearance and immunohistochemical profile. We also include a literature review of SMARCA4-deficient tumors of the tubular gastrointestinal tract with their immunohistochemical and mismatch repair profiles for each specimen. Due to its non-specific histologic appearance and variable staining in expanded immunohistochemical panels, this tumor frequently overlaps with other tumor types, making the diagnosis of SMARCA4-UT challenging. These tumors are often associated with intestinal metaplasia of the esophagus and are thought to represent a high-grade undifferentiated transformation of a conventional esophageal adenocarcinoma. These tumors are typically associated with poor clinical outcomes and have poor response to conventional therapies. Currently, there are no standard guidelines for treatment of these tumors; however, palliative radiotherapy and systemic chemotherapy may provide benefit. More recently, immunotherapy and novel therapeutic targets have shown some promise for these patients.
Collapse
Affiliation(s)
- Rana Chakrabarti
- Department of Pathology, University of Manitoba, Winnipeg, Canada
| | - Sherman Lin
- Department of Pathology, Western University, London, Canada
| | - Hui Wang
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
2
|
Fan Z, Yan W, Li J, Yan M, Liu B, Yang Z, Yu B. PHF10 inhibits gastric epithelium differentiation and induces gastric cancer carcinogenesis. Cancer Gene Ther 2024; 31:1511-1524. [PMID: 39127832 PMCID: PMC11489120 DOI: 10.1038/s41417-024-00820-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Gastric cancer (GC) is characterized with differentiation disorders, the precise mechanisms of which remain unknown. Our previous study showed that PHF10 exhibits oncogenic properties in GC, with its histological presentation indicating a potential role in the modulation of differentiation disorders in GC. This study reveals a significant upregulation of PHF10 in GC tissues, showing a negative correlation with differentiation level. PHF10 was found to impede the differentiation of GC cells while promoting their stemness properties. This was attributed to the formation of a positive feedback loop between PHF10 and E2F1, resulting in dysregulated expression levels in GC. Additionally, PHF10 was found to mediate the transcriptional repression of the target gene DUSP5 in GC cells through the assembly of the SWI/SNF complex, leading to an elevation in pERK1/2 levels. In GC tissues, a negative association was noted between the expression of E2F1 or PHF10 and DUSP5, whereas a positive correlation was observed between the expression of E2F1 or PHF10 and pERK1/2. Additional rescue experiments confirmed that the inhibitory effect on differentiation of GC cells by PHF10 is dependent on the DUSP5-pERK1/2 axis. The signaling cascade involving E2F1-PHF10-DUSP5-pERK1/2 was identified as an important player in regulating differentiation and stemness in GC cells. PHF10 emerges as a promising target for differentiation induction therapy in GC.
Collapse
Affiliation(s)
- Zhiyuan Fan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjing Yan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingya Liu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongyin Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Beiqin Yu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Roden AC. Molecularly Defined Thoracic Neoplasms. Adv Anat Pathol 2024; 31:303-317. [PMID: 38501690 DOI: 10.1097/pap.0000000000000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Molecularly defined neoplasms are increasingly recognized, given the broader application and performance of molecular studies. These studies allow us to better characterize these neoplasms and learn about their pathogenesis. In the thorax, molecularly defined neoplasms include tumors such as NUT carcinoma, SMARCA4-deficient undifferentiated tumor (DUT), primary pulmonary myxoid sarcoma with EWSR1::CREB1 fusion, hyalinizing clear cell carcinoma, and SMARCB1-deficient neoplasms. Overall, these tumors are rare but are now more often recognized given more widely available immunostains such as NUT (NUT carcinoma), BRG1 (SMARCA4-DUT), and INI-1 (SMARCB1-deficient neoplasm). Furthermore, cytogenetic studies for EWSR1 to support a hyalinizing clear cell carcinoma or primary pulmonary myxoid sarcoma are, in general, easily accessible. This enables pathologists to recognize and diagnose these tumors. The diagnosis of these tumors is important for clinical management and treatment. For instance, clinical trials are available for patients with NUT carcinoma, SMARCA4-DUT, and SMACRB1-deficient neoplasms. Herein, our current knowledge of clinical, morphologic, immunophenotypic, and molecular features of NUT carcinomas, SMARCA4-DUT, primary pulmonary myxoid sarcomas, hyalinizing clear cell carcinoma, and SMARCB1-deficient neoplasms will be reviewed.
Collapse
Affiliation(s)
- Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, MN
| |
Collapse
|
4
|
Zhou P, Fu Y, Wang W, Tang Y, Jiang L. Gastric SMARCA4-deficient undifferentiated tumor (SMARCA4-UT): a clinicopathological analysis of four rare cases. Orphanet J Rare Dis 2024; 19:237. [PMID: 38877473 PMCID: PMC11179226 DOI: 10.1186/s13023-024-03244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND SMARCA4, as one of the subunits of the SWI/SNF chromatin remodeling complex, drives SMARCA4-deficient tumors. Gastric SMARCA4-deficient tumors may include gastric SMARCA4-deficient carcinoma and gastric SMARCA4-deficient undifferentiated tumor (SMARCA4-UT). Gastric SMARCA4-UT is rare and challenging to diagnose in clinical practice. The present report aims to provide insight into the clinicopathological characteristics and genetic alterations of gastric SMARCA4-UTs. RESULTS We retrospectively reported four rare cases of gastric SMARCA4-UTs. All four cases were male, aged between 61 and 82 years. These tumors presented as ulcerated and transmural masses with infiltration, staged as TNM IV in cases 1, 2 and 4, and TNM IIIA in case 3. Pathologically, four cases presented solid architecture with undifferentiated morphology. Cases 2 and 3 showed focal necrosis and focal rhabdoid morphology. Immunohistochemical staining showed negative expression of epithelial markers and deficient expression of SMARCA4. Furthermore, positivity for Syn (cases 1, 2 and 3) and SALL4 (cases 1 and 2) were observed. Mutant p53 expression occurred in four cases, resulting in strong and diffuse staining of p53 expression in cases 1, 2 and 4, and complete loss in case 3. The Ki67 proliferative index exceeded 80%. 25% (1/4, case 4) of cases had mismatch repair deficiency (dMMR). Two available cases (cases 1 and 3) were detected with SMRACA4 gene alterations. The response to neoadjuvant therapy was ineffective in case 1. CONCLUSIONS Gastric SMARCA4-UT is a rare entity of gastric cancer with a poor prognosis, predominantly occurs in male patients. The tumors are typically diagnosed at advanced stages and shows a solid architecture with undifferentiated morphology. Negative expression of epithelial markers and complete loss of SMARCA4 immunoexpression are emerging as a useful diagnostic tool for rare gastric SMARCA4-UTs.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Pathology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, P.R. China
| | - Yiyun Fu
- Department of Pathology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, P.R. China
| | - Weiya Wang
- Department of Pathology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, P.R. China
| | - Yuan Tang
- Department of Pathology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, P.R. China
| | - Lili Jiang
- Department of Pathology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, P.R. China.
| |
Collapse
|
5
|
Angelico G, Attanasio G, Colarossi L, Colarossi C, Montalbano M, Aiello E, Di Vendra F, Mare M, Orsi N, Memeo L. ARID1A Mutations in Gastric Cancer: A Review with Focus on Clinicopathological Features, Molecular Background and Diagnostic Interpretation. Cancers (Basel) 2024; 16:2062. [PMID: 38893181 PMCID: PMC11171396 DOI: 10.3390/cancers16112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
AT-rich interaction domain 1 (ARID1A) is a pivotal gene with a significant role in gastrointestinal tumors which encodes a protein referred to as BAF250a or SMARCF1, an integral component of the SWI/SNF (SWItch/sucrose non-fermentable) chromatin remodeling complex. This complex is instrumental in regulating gene expression by modifying the structure of chromatin to affect the accessibility of DNA. Mutations in ARID1A have been identified in various gastrointestinal cancers, including colorectal, gastric, and pancreatic cancers. These mutations have the potential to disrupt normal SWI/SNF complex function, resulting in aberrant gene expression and potentially contributing to the initiation and progression of these malignancies. ARID1A mutations are relatively common in gastric cancer, particularly in specific adenocarcinoma subtypes. Moreover, such mutations are more frequently observed in specific molecular subtypes, such as microsatellite stable (MSS) cancers and those with a diffuse histological subtype. Understanding the presence and implications of ARID1A mutations in GC is of paramount importance for tailoring personalized treatment strategies and assessing prognosis, particularly given their potential in predicting patient response to novel treatment strategies including immunotherapy, poly(ADP) ribose polymerase (PARP) inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitors.
Collapse
Affiliation(s)
- Giuseppe Angelico
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy;
| | - Giulio Attanasio
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy;
| | - Lorenzo Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Cristina Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Matteo Montalbano
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
- PhD Program in Precision Medicine, University of Palermo, 90144 Palermo, Italy
| | - Eleonora Aiello
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Federica Di Vendra
- Department of Chemical, Biological and Environmental Chemistry, University of Messina, 98122 Messina, Italy
| | - Marzia Mare
- Medical Oncology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Nicolas Orsi
- Leeds Institute of Medical Research, St James’s University Hospital, The University of Leeds, Leeds LS9 7TF, UK;
| | - Lorenzo Memeo
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| |
Collapse
|
6
|
Liang H, Zheng X, Zhang X, Zhang Y, Zheng J. The role of SWI/SNF complexes in digestive system neoplasms. Med Oncol 2024; 41:119. [PMID: 38630164 DOI: 10.1007/s12032-024-02343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 04/19/2024]
Abstract
Chromatin remodeling is a critical step in the DNA damage response, and the ATP-dependent chromatin remodelers are a group of epigenetic regulators that alter nucleosome assembly and regulate transcription factor accessibility to DNA, preventing genomic instability and tumorigenesis caused by DNA damage. The SWI/SNF chromatin remodeling complex is one of them, and mutations in the gene encoding the SWI/SNF subunit are frequently found in digestive tumors. We review the most recent literature on the role of SWI/SNF complexes in digestive tumorigenesis, with different SWI/SNF subunits playing different roles. They regulate the biological behavior of tumor cells, participate in multiple signaling pathways, interact with multiple genes, and have some correlation with the prognosis of patients. Their carcinogenic properties may help discover new therapeutic targets. Understanding the mutations and defects of SWI/SNF complexes, as well as the underlying functional mechanisms, may lead to new strategies for treating the digestive system by targeting relevant genes or modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Hanyun Liang
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang, 261053, China
| | - Xin Zheng
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang, 261053, China
| | - Xiao Zhang
- Department of Ultrasound, Weifang People's Hospital, Weifang, 261041, China
| | - Yan Zhang
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261053, China.
| | - Jie Zheng
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang, 261053, China.
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
7
|
Zhang Z, Li Q, Sun S, Li Z, Cui Z, Liu Q, Zhang Y, Xiong S, Zhang S. Expression of SMARCA2 and SMARCA4 in gastric adenocarcinoma and construction of a nomogram prognostic model. Int J Clin Oncol 2023; 28:1487-1500. [PMID: 37634210 DOI: 10.1007/s10147-023-02403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/06/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Aberrant expression of SWI/SNF complex subunits is closely associated with tumorigenesis. The clinicopathological and prognostic significance of altered SMARCA2 and SMARCA4 subunits has not been well evaluated in gastric adenocarcinoma. METHODS We collected 1271 postoperative cases of gastric adenocarcinoma and then constructed tissue microarrays (TMA), from which we obtained the immunohistochemistry expression of SMARCA2 and SMARCA4. Next, we screened the variables related to the loss of SMARCA2 and SMARCA4 by univariate correlation analysis and multivariate logistic regression analysis. Then, we identified the variables related to prognosis by univariate and multivariate Cox regression analysis. Finally, we constructed a nomogram prognostic model and evaluated it. RESULTS The loss of SMARCA2 and SMARCA4 occurred in 236 (18.57%) and 86 (6.77%) cases, respectively, including 26 cases of co-loss. After multivariate logistic regression, variables independently associated with SMARCA2 loss were T stage, differentiation status, WHO histological classification, and EBER. Variables independently associated with SMARCA4 loss were differentiation status, WHO histological classification, PD-L1, and MMR. Survival analysis revealed that the SMARCA2 and SMARCA4 lost groups showed worse survival than the corresponding present groups (P = 0.032 and P = 0.0048, respectively). Univariate and multivariate Cox analyses identified independent prognostic factors, including age, T stage, N stage, M stage, SMARCA2, and chemotherapy. CONCLUSION The loss of SMARCA2 and SMARCA4 correlated with poor differentiation, leading to a worse prognosis. SMARCA2, as an independent prognostic factor, combined with other clinicopathological variables, established a novel nomogram prognostic model, which outperformed the AJCC TNM model.
Collapse
Affiliation(s)
- Zhenkun Zhang
- Weihai Municipal Hospital, Shandong University, Weihai, 264200, Shandong, China
- Department of Oncology, Shouguang People's Hospital, Weifang, 262700, Shandong, China
| | - Qiujing Li
- Department of Pathology, Weihai Municipal Hospital, Shandong University, No. 70 Heping Road, Huancui District, Weihai, 264200, Shandong, China
| | - Shanshan Sun
- Department of Oncology, Weihai Municipal Hospital, Shandong University, Weihai, 264200, Shandong, China
| | - Zhe Li
- Weifang Medical College, Weifang, 261053, Shandong, China
| | - ZhengGuo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Qian Liu
- Department of Pathology, Weihai Municipal Hospital, Shandong University, No. 70 Heping Road, Huancui District, Weihai, 264200, Shandong, China
| | - Yujie Zhang
- Department of Pathology, Weihai Municipal Hospital, Shandong University, No. 70 Heping Road, Huancui District, Weihai, 264200, Shandong, China
| | - Sili Xiong
- Weifang Medical College, Weifang, 261053, Shandong, China
| | - Shukun Zhang
- Department of Pathology, Weihai Municipal Hospital, Shandong University, No. 70 Heping Road, Huancui District, Weihai, 264200, Shandong, China.
| |
Collapse
|
8
|
Chen M, Yao X, Ping J, Shen H, Wei Y, Wang WL. Switch/Sucrose Non-Fermentable Complex-Deficient Rhabdoid Carcinoma of Stomach: A Rare Case Report and Literature Review. Int J Surg Pathol 2023; 31:1364-1374. [PMID: 36895105 DOI: 10.1177/10668969221146204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Gastric undifferentiated/rhabdoid carcinoma is a rare highly invasive tumor of epithelial origin. Due to mutations in the switch/sucrose non-fermentable (SWI/SNF) complex, these tumor cells are usually dedifferentiated, presenting a characteristic rhabdoid profile. In this report, we present a gastric rhabdoid carcinoma in a 77-year-old man who presented with intermittent epigastric pain. Gastroscopy revealed a giant ulcer in the antrum, which proved to be a malignant tumor in the biopsy. Therefore, he was admitted to our hospital and underwent laparoscopic radical gastrectomy and D2 lymphadenectomy. The resected neoplasm contained a variety of rhabdoid cells that lacked well-differentiated elements. Immunohistochemical staining revealed that SMARCA4/BRG1 expression was absent in tumor cells. Finally, the patient was diagnosed with undifferentiated/rhabdoid carcinoma of the stomach. The patient was treated with tegafur-gimeracil-oteracil potassium capsules postoperatively. There were no signs of imaging changes observed at the 18-month follow-up. We reviewed similar cases in previous reports. These tumors are more likely to affect older male adults and usually lack typical symptoms. Histologically, most tumor cells are poorly cohesive and rhabdoid, and differentiated compositions of various degrees can occasionally be seen. Positive staining for vimentin was seen in all tumor cells. Epithelial markers are positive in the majority of tumors. SWI/SNF mutant tumors tend to be associated with a poor prognosis. In this review, more than half of the patients died within one year after surgery. The treatments for these diseases are still being explored.
Collapse
Affiliation(s)
- Minzhi Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Yao
- Department of Hepatopancreatobiliary Surgery, Huzhou Central Hospital, Huzhou, China
| | - Jinliang Ping
- Department of Pathology, Huzhou Central Hospital, Huzhou, China
| | - Hua Shen
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Huzhou, China
| | - Yunhai Wei
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Huzhou, China
| | - Wei-Lin Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Zhang Z, Li Q, Sun S, Ye J, Li Z, Cui Z, Liu Q, Zhang Y, Xiong S, Zhang S. Prognostic and immune infiltration significance of ARID1A in TCGA molecular subtypes of gastric adenocarcinoma. Cancer Med 2023; 12:16716-16733. [PMID: 37366273 PMCID: PMC10501255 DOI: 10.1002/cam4.6294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/19/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND AT-rich interaction domain 1A (ARID1A) is an essential subunit of the switch/sucrose non-fermentable chromatin remodeling complex and is considered to be a tumor suppressor. The Cancer Genome Atlas (TCGA) molecular classification has deepened our understanding of gastric cancer at the molecular level. This study explored the significance of ARID1A expression in TCGA subtypes of gastric adenocarcinoma. METHODS We collected 1248 postoperative patients with gastric adenocarcinoma, constructed tissue microarrays, performed immunohistochemistry for ARID1A, and obtained correlations between ARID1A and clinicopathological variables. We then carried out the prognostic analysis of ARID1A in TCGA subtypes. Finally, we screened patients by random sampling and propensity score matching method and performed multiplex immunofluorescence to explore the effects of ARID1A on CD4, CD8, and PD-L1 expression in TCGA subtypes. RESULTS Seven variables independently associated with ARID1A were screened out: mismatch repair proteins, PD-L1, T stage, differentiation status, p53, E-cadherin, and EBER. The independent prognostic variables in the genomically stable (GS) subtype were N stage, M stage, T stage, chemotherapy, size, and ARID1A. PD-L1 expression was higher in the ARID1A negative group than in the ARID1A positive group in all TCGA subgroups. CD4 showed higher expression in the ARID1A negative group in most subtypes, while CD8 did not show the difference in most subtypes. When ARID1A was negative, PD-L1 expression was positively correlated with CD4/CD8 expression; while when ARID1A was positive, this correlation disappeared. CONCLUSIONS The negative expression of ARID1A occurred more frequently in the Epstein-Barr virus and microsatellite instability subtypes and was an independent adverse prognostic factor in the GS subtype. In the TCGA subtypes, ARID1A negative expression caused increased CD4 and PD-L1 expression, whereas CD8 expression appeared independent of ARID1A. The expression of CD4/CD8 induced by ARID1A negativity was accompanied by an increase in PD-L1 expression.
Collapse
Affiliation(s)
- Zhenkun Zhang
- Weihai Municipal HospitalShandong UniversityWeihaiChina
- Department of OncologyShouguang People's HospitalWeifangChina
| | - Qiujing Li
- Department of Pathology, Weihai Municipal HospitalShandong UniversityWeihaiChina
| | - Shanshan Sun
- Department of Oncology, Weihai Municipal HospitalShandong UniversityWeihaiChina
| | - Jing Ye
- Binzhou Medical UniversityYantaiChina
| | - Zhe Li
- Weifang Medical CollegeWeifangChina
| | - Zhengguo Cui
- Department of Environmental HealthUniversity of Fukui School of Medical SciencesFukuiJapan
| | - Qian Liu
- Department of Pathology, Weihai Municipal HospitalShandong UniversityWeihaiChina
| | - Yujie Zhang
- Department of Pathology, Weihai Municipal HospitalShandong UniversityWeihaiChina
| | | | - Shukun Zhang
- Department of Pathology, Weihai Municipal HospitalShandong UniversityWeihaiChina
| |
Collapse
|
10
|
Wang L, Tang J. SWI/SNF complexes and cancers. Gene 2023; 870:147420. [PMID: 37031881 DOI: 10.1016/j.gene.2023.147420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Epigenetics refers to the study of genetic changes that can affect gene expression without altering the underlying DNA sequence, including DNA methylation, histone modification, chromatin remodelling, X chromosome inactivation and non-coding RNA regulation. Of these, DNA methylation, histone modification and chromatin remodelling constitute the three classical modes of epigenetic regulation. These three mechanisms alter gene transcription by adjusting chromatin accessibility, thereby affecting cell and tissue phenotypes in the absence of DNA sequence changes. In the presence of ATP hydrolases, chromatin remodelling alters the structure of chromatin and thus changes the transcription level of DNA-guided RNA. To date, four types of ATP-dependent chromatin remodelling complexes have been identified in humans, namely SWI/SNF, ISWI, INO80 and NURD/MI2/CHD. SWI/SNF mutations are prevalent in a wide variety of cancerous tissues and cancer-derived cell lines as discovered by next-generation sequencing technologies.. SWI/SNF can bind to nucleosomes and use the energy of ATP to disrupt DNA and histone interactions, sliding or ejecting histones, altering nucleosome structure, and changing transcriptional and regulatory mechanisms. Furthermore, mutations in the SWI/SNF complex have been observed in approximately 20% of all cancers. Together, these findings suggest that mutations targeting the SWI/SNF complex may have a positive impact on tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Liyuan Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Oncology and Hematology, Jinan 250000, Shandong Province, China
| | - Jinglong Tang
- Adicon Medical Laboratory Center, Molecular Genetic Diagnosis Center, Pathological Diagnosis Center, Jinan 250014, Shandong Province, China.
| |
Collapse
|
11
|
Zhang Z, Li Q, Sun S, Li Z, Cui ZG, Zhang M, Liu Q, Zhang Y, Xiong S, Zhang S. Clinicopathological and prognostic significance of SWI/SNF complex subunits in undifferentiated gastric carcinoma. World J Surg Oncol 2022; 20:383. [PMID: 36464671 PMCID: PMC9721057 DOI: 10.1186/s12957-022-02847-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The switch/sucrose nonfermentable (SWI/SNF) complex is an evolutionarily conserved chromatin remodeling complex that displays dysfunction in many tumors, especially undifferentiated carcinoma. Cancer stem cells (CSC), a special type of undifferentiated cancer cells with stem cell-like properties, play an essential role in tumor cell proliferation, invasion, and metastasis. In undifferentiated gastric carcinomas, the association of SWI/SNF complexes with clinicopathological features, CSC phenotype, and the prognosis is not fully understood. METHODS We collected a cohort of 21 patients with undifferentiated/dedifferentiated gastric carcinoma. We next performed immunohistochemistry staining for the five subunits of the SWI/SNF complex (ARID1A, ARID1B, SMARCA2, SMARCA4, and SMARCB1), and four mismatch repair proteins (MLH1, PMS2, MSH2, and MSH6), as well as other markers such as p53, PD-L1, and cancer stem cell (CSC) markers (SOX2, SALL4). Then, we investigated the correlation of SWI/SNF complex subunits with clinicopathological characters and performed prognostic analysis. RESULTS We observed SMARCA2 loss in 12 cases (57.14%), followed by ARID1A (5 cases, 23.81%) and SMARCA4 (3 cases, 14.29%). Fourteen cases (66.67%) lost any one of the SWI/SNF complex subunits, including 3 cases with SMARCA2 and ARID1A co-loss, and 3 cases with SMARCA2 and SMARCA4 co-loss. Correlation analysis revealed that the CSC phenotype occurred more frequently in the SWI/SNF complex deficient group (P = 0.0158). Survival analysis revealed that SWI/WNF complex deficiency, undifferentiated status, CSC phenotype, and the loss of SMARCA2 and SMARCA4 resulted in worse survival. Univariate and multivariate Cox regression analyses screened out three independent factors associated with worse prognosis: undifferentiated status, SWI/SNF complex deficiency, and lymph node metastasis. CONCLUSIONS The SWI/SNF complex deficiency was more likely to result in a CSC phenotype and worse survival and was an independent prognostic factor in undifferentiated/dedifferentiated gastric carcinoma.
Collapse
Affiliation(s)
- Zhenkun Zhang
- Weihai Municipal Hospital, Shandong University, Weihai, 264200, Shandong, China.,Department of Oncology, Shouguang People's Hospital, Weifang, 262700, Shandong, China
| | - Qiujing Li
- Department of Pathology, Weihai Municipal Hospital, Shandong University, Weihai, 264200, Shandong, China
| | - Shanshan Sun
- Department of Oncology, Weihai Municipal Hospital, Shandong University, Weihai, 264200, Shandong, China
| | - Zhe Li
- Weifang Medical College, Weifang, 261053, Shandong, China
| | - Zheng Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Menglan Zhang
- Department of Pathology, Qinghai Provincial People's Hospital, Xining, 810000, Qinghai, China
| | - Qian Liu
- Department of Pathology, Weihai Municipal Hospital, Shandong University, Weihai, 264200, Shandong, China
| | - Yujie Zhang
- Department of Pathology, Weihai Municipal Hospital, Shandong University, Weihai, 264200, Shandong, China
| | - Sili Xiong
- Weifang Medical College, Weifang, 261053, Shandong, China
| | - Shukun Zhang
- Department of Pathology, Weihai Municipal Hospital, Shandong University, Weihai, 264200, Shandong, China.
| |
Collapse
|
12
|
Malpeli G, Barbi S, Innamorati G, Alloggio M, Filippini F, Decimo I, Castelli C, Perris R, Bencivenga M. Landscape of Druggable Molecular Pathways Downstream of Genomic CDH1/Cadherin-1 Alterations in Gastric Cancer. J Pers Med 2022; 12:jpm12122006. [PMID: 36556227 PMCID: PMC9784514 DOI: 10.3390/jpm12122006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 12/09/2022] Open
Abstract
Loss of CDH1/Cadherin-1 is a common step towards the acquisition of an abnormal epithelial phenotype. In gastric cancer (GC), mutation and/or downregulation of CDH1/Cadherin-1 is recurrent in sporadic and hereditary diffuse GC type. To approach the molecular events downstream of CDH1/Cadherin-1 alterations and their relevance in gastric carcinogenesis, we queried public databases for genetic and DNA methylation data in search of molecular signatures with a still-uncertain role in the pathological mechanism of GC. In all GC subtypes, modulated genes correlating with CDH1/Cadherin-1 aberrations are associated with stem cell and epithelial-to-mesenchymal transition pathways. A higher level of genes upregulated in CDH1-mutated GC cases is associated with reduced overall survival. In the diffuse GC (DGC) subtype, genes downregulated in CDH1-mutated compared to cases with wild type CDH1/Cadherin-1 resulted in being strongly intertwined with the DREAM complex. The inverse correlation between hypermethylated CpGs and CDH1/Cadherin-1 transcription in diverse subtypes implies a common epigenetic program. We identified nonredundant protein-encoding isoforms of 22 genes among those differentially expressed in GC compared to normal stomach. These unique proteins represent potential agents involved in cell transformation and candidate therapeutic targets. Meanwhile, drug-induced and CDH1/Cadherin-1 mutation-related gene expression comparison predicts FIT, GR-127935 hydrochloride, amiodarone hydrochloride in GC and BRD-K55722623, BRD-K13169950, and AY 9944 in DGC as the most effective treatments, providing cues for the design of combined pharmacological treatments. By integrating genetic and epigenetic aspects with their expected functional outcome, we unveiled promising targets for combinatorial pharmacological treatments of GC.
Collapse
Affiliation(s)
- Giorgio Malpeli
- Department of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
- Correspondence:
| | - Stefano Barbi
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Giulio Innamorati
- Department of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Mariella Alloggio
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Federica Filippini
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Claudia Castelli
- Pathology Unit, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Roberto Perris
- Department of Biosciences, COMT-Centre for Molecular and Translational Oncology, University of Parma, 43124 Parma, Italy
| | - Maria Bencivenga
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| |
Collapse
|
13
|
Zhou Z, Huang D, Yang S, Liang J, Wang X, Rao Q. Clinicopathological Significance, Related Molecular Changes and Tumor Immune Response Analysis of the Abnormal SWI/SNF Complex Subunit PBRM1 in Gastric Adenocarcinoma. PATHOLOGY AND ONCOLOGY RESEARCH 2022; 28:1610479. [PMID: 35928964 PMCID: PMC9344308 DOI: 10.3389/pore.2022.1610479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022]
Abstract
Background: PBRM1 gene abnormalities were recently found to play a role in tumor development and tumor immune activity. This article will explore the clinicopathological and molecular changes and tumor immune activity of the abnormal SWI/SNF complex subunit PBRM1 in gastric adenocarcinoma (GAC) and its significance. Methods: The cBioPortal, LinkedOmics and TISIDB datasets were used to analyze the abnormality of the PBRM1 gene in GAC and its relationship with prognosis, related molecular changes and tumor-infiltrating lymphocytes (TILs). In addition, 198 GAC cases were collected to further study the relationship between the loss/attenuation of PBRM1 expression and clinicopathology, prognosis, microsatellite stability, PD-L1 expression and TIL in GAC. DNA whole-exome sequencing was performed on 7 cases of gastric cancer with loss of PBRM1 expression. Results: The cBioPortal data showed that PBRM1 deletion/mutation accounted for 7.32% of GAC and was significantly associated with several molecular changes, such as molecular subtypes of GAC. The LinkedOmics dataset showed that PBRM1 mutation and its promoter DNA methylation showed lower PBRM1 mRNA expression, and PBRM1 mutation cases showed significantly higher mRNA expression of PD-L1 (CD274). TISIDB data showed that PBRM1 abnormalities were significantly positively associated with multiple TILs. In our group of 198 cases, the loss/attenuation of PBRM1 expression was significantly positively correlated with intra-tumoral tumor infiltrating lymphocytes (iTILs) and deficient MMR and PD-L1 expression. Kaplan–Meier survival analysis showed that the overall survival of GAC patients with loss/attenuation of PBRM1 expression was significantly better (p = 0.023). iTIL was an independent prognostic factor of GAC. Loss of PBRM1 expression often co-occurs with mutations in other SWI/SNF complex subunit genes, and there are some repetitive KEGG signaling changes. Conclusion: Abnormality of the PBRM1 gene may be related to the occurrence of some GACs and can affect tumor immune activity, thereby affecting clinicopathology and prognosis. It may be a potentially effective predictive marker for immunotherapy and a novel therapeutic approach associated with synthetic lethality.
Collapse
Affiliation(s)
- Zhiyi Zhou
- Department of Pathology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Dandan Huang
- Digestive Endoscopic Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Shudong Yang
- Department of Pathology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jiabei Liang
- Department of Pathology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xuan Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qiu Rao
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- *Correspondence: Qiu Rao,
| |
Collapse
|
14
|
Dedifferentiation-like tubular and solid carcinoma of the stomach shows phenotypic divergence and association with deficient SWI/SNF complex. Virchows Arch 2022; 480:771-781. [PMID: 35122125 DOI: 10.1007/s00428-022-03288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/24/2022]
Abstract
Gastric carcinoma showing an abrupt transition from a tubular to solid pattern is an unusual phenomenon reminiscent of dedifferentiation. The phenotypic and molecular characteristics of this transition are still unclear. We retrospectively collected 41 gastric carcinomas exhibiting dedifferentiation-like tubular to solid transition and applied an array of immunohistochemical stains, including neuroendocrine and hepatocytic markers, to delineate their lineage. The status of Epstein-Barr virus (EBV) infections, mismatch repair proteins, SWI/SNF complex proteins and p53 expression levels were examined. The clinicopathologic differences were assessed by statistical analysis. Except for 10 cases with neuroendocrine differentiation and 2 EBV-associated carcinomas, we identified 8 hepatoid carcinomas and 21 solid adenocarcinomas with loss of CDX2 and/or hep-par1 expression in solid part (12/29). A subset of solid adenocarcinoma was associated with MSI (8) and mutant p53 expression was frequent in non-MSI cases (10/13). We found hepatoid carcinomas usually harbored SMARCA2 loss (5/8), MSI-associated cases commonly had ARID1A loss (6/8), and non-MSI solid adenocarcinomas frequently showed SMARCA2/A4 loss (7/13) with a high rate of concurrent ARID1A loss (4/7). Spatial correlation between solid transition and loss of SWI/SNF complex subunits were seen in 63% of tumors (12/19). Dedifferentiation-like tubular and solid carcinoma was associated with a propensity to inferior survival outcomes (p = 0.034), especially hepatoid carcinoma and in the non-MSI/EBV intestinal subgroup. In conclusion, gastric cancer exhibiting dedifferentiation-like tubular to solid transition is a phenotypically divergent group that shares common alterations in the SWI/SNF complex.
Collapse
|
15
|
Peng L, Li J, Wu J, Xu B, Wang Z, Giamas G, Stebbing J, Yu Z. A Pan-Cancer Analysis of SMARCA4 Alterations in Human Cancers. Front Immunol 2021; 12:762598. [PMID: 34675941 PMCID: PMC8524462 DOI: 10.3389/fimmu.2021.762598] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/13/2021] [Indexed: 01/04/2023] Open
Abstract
Background SMARCA4, the essential ATPase subunit of SWI/SNF chromatin remodeling complex, regulates transcription through the control of chromatin structure and is increasingly thought to play significant roles in human cancers. This study aims to explore the potential role of SMARCA4 with a view to providing insights on pathologic mechanisms implicated here. Methods The potential roles of SMARCA4 in different tumors were explored based on The Cancer Genome Atlas (TCGA), Genotype-tissue expression (GTEx), Tumor Immune Estimation Resource (TIMER), and Gene Set Enrichment Analysis (GSEA) datasets. The expression difference, mutation and phosphorylation status, survival, pathological stage, DNA methylation, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), tumor microenvironment (TME), and immune cell infiltration related to SMARCA4 were analyzed. Results High expression levels of SMARCA4 were observed in most cancer types. SMARCA4 expression in tumor samples correlates with poor overall survival in several cancers. Lung adenocarcinoma cases with altered SMARCA4 showed a poorer prognosis. Enhanced phosphorylation levels of S613, S695, S699, and S1417 were observed in several tumors, including breast cancer. SMARCA4 correlated with tumor immunity and associated with different immune cells and genes in different cancer types. TMB, MSI, MMR, and DNA methylation correlated with SMARCA4 dysregulation in cancers. SMARCA4 expression was negatively associated with CD8+ T-cell infiltration in several tumors. Furthermore, the SWI/SNF superfamily-type complex and ATPase complex may be involved in the functional mechanisms of SMARCA4, albeit these data require further confirmation. Conclusions Our study offers a comprehensive understanding of the oncogenic roles of SMARCA4 across different tumors. SMARCA4 may correlate with tumor immunity.
Collapse
Affiliation(s)
- Ling Peng
- Department of Respiratory Disease, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jisheng Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiqiang Wang
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Justin Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
16
|
Mutations in Epigenetic Regulation Genes in Gastric Cancer. Cancers (Basel) 2021; 13:cancers13184586. [PMID: 34572812 PMCID: PMC8467700 DOI: 10.3390/cancers13184586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Epigenetic mechanisms, such as DNA methylation/demethylation, covalent modifications of histone proteins, and chromatin remodeling, create specific patterns of gene expression. Epigenetic deregulations are associated with oncogenesis, relapse of the disease and metastases, and can serve as a useful clinical marker. We assessed the clinical relevance of integrity of the genes coding for epigenetic regulator proteins by mutational profiling of 25 genes in 135 gastric cancer (GC) samples. Overall, mutations in the epigenetic regulation genes were found to be significantly associated with reduced overall survival of patients in the group with metastases and in the group with tumors with signet ring cells. We have also discovered mutual exclusivity of somatic mutations in the KMT2D, KMT2C, ARID1A, and CHD7 genes in our cohort. Our results suggest that mutations in epigenetic regulation genes may be valuable clinical markers and deserve further exploration in independent cohorts. Abstract We have performed mutational profiling of 25 genes involved in epigenetic processes on 135 gastric cancer (GC) samples. In total, we identified 79 somatic mutations in 49/135 (36%) samples. The minority (n = 8) of mutations was identified in DNA methylation/demethylation genes, while the majority (n = 41), in histone modifier genes, among which mutations were most commonly found in KMT2D and KMT2C. Somatic mutations in KMT2D, KMT2C, ARID1A and CHD7 were mutually exclusive (p = 0.038). Mutations in ARID1A were associated with distant metastases (p = 0.03). The overall survival of patients in the group with metastases and in the group with tumors with signet ring cells was significantly reduced in the presence of mutations in epigenetic regulation genes (p = 0.036 and p = 0.041, respectively). Separately, somatic mutations in chromatin remodeling genes correlate with low survival rate of patients without distant metastasis (p = 0.045) and in the presence of signet ring cells (p = 0.0014). Our results suggest that mutations in epigenetic regulation genes may be valuable clinical markers and deserve further exploration in independent cohorts.
Collapse
|
17
|
Glückstein MI, Dintner S, Arndt TT, Vlasenko D, Schenkirsch G, Agaimy A, Müller G, Märkl B, Grosser B. Comprehensive Immunohistochemical Study of the SWI/SNF Complex Expression Status in Gastric Cancer Reveals an Adverse Prognosis of SWI/SNF Deficiency in Genomically Stable Gastric Carcinomas. Cancers (Basel) 2021; 13:3894. [PMID: 34359794 PMCID: PMC8345509 DOI: 10.3390/cancers13153894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
The SWI/SNF complex has important functions in the mobilization of nucleosomes and consequently influences gene expression. Numerous studies have demonstrated that mutations or deficiency of one or more subunits can have an oncogenic effect and influence the development, progression, and eventual therapy resistance of tumor diseases. Genes encoding subunits of the SWI/SNF complex are mutated in approximately 20% of all human tumors. This study aimed to investigate the frequency, association with clinicopathological characteristics, and prognosis of immunohistochemical expression of proteins of the SWI/SNF complexes, SMARCA2, SMARCA4 SMARCB1, ARID1A, ARID1B, and PBRM1 in 477 adenocarcinomas of the stomach and gastroesophageal junction. Additionally, the tumors were classified immunohistochemically in analogy to The Cancer Genome Atlas (TCGA) classification. Overall, 32% of cases demonstrated aberrant expression of the SWI/SNF complex. Complete loss of SMARCA4 was detected in three cases (0.6%) and was associated with adverse clinical characteristics. SWI/SNF aberration emerged as an independent negative prognostic factor for overall survival in genomically stable patients in analogy to TCGA. In conclusion, determination of SWI/SNF status could be suggested in routine diagnostics in genomically stable tumors to identify patients who might benefit from new therapeutic options.
Collapse
Affiliation(s)
- Marie-Isabelle Glückstein
- Institute of General Pathology and Molecular Diagnostics, University Hospital Augsburg, 86156 Augsburg, Germany; (M.-I.G.); (S.D.); (T.T.A.); (B.M.)
| | - Sebastian Dintner
- Institute of General Pathology and Molecular Diagnostics, University Hospital Augsburg, 86156 Augsburg, Germany; (M.-I.G.); (S.D.); (T.T.A.); (B.M.)
| | - Tim Tobias Arndt
- Institute of General Pathology and Molecular Diagnostics, University Hospital Augsburg, 86156 Augsburg, Germany; (M.-I.G.); (S.D.); (T.T.A.); (B.M.)
- Institute of Mathematics and Computational Statistics, University of Augsburg, 86159 Augsburg, Germany;
| | - Dmytro Vlasenko
- Department of General, Visceral and Transplantation Surgery, University Hospital Augsburg, 86156 Augsburg, Germany;
| | - Gerhard Schenkirsch
- Tumor Data Management, University Hospital Augsburg, 86156 Augsburg, Germany;
| | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Gernot Müller
- Institute of Mathematics and Computational Statistics, University of Augsburg, 86159 Augsburg, Germany;
| | - Bruno Märkl
- Institute of General Pathology and Molecular Diagnostics, University Hospital Augsburg, 86156 Augsburg, Germany; (M.-I.G.); (S.D.); (T.T.A.); (B.M.)
| | - Bianca Grosser
- Institute of General Pathology and Molecular Diagnostics, University Hospital Augsburg, 86156 Augsburg, Germany; (M.-I.G.); (S.D.); (T.T.A.); (B.M.)
| |
Collapse
|
18
|
Lien TS, Chan H, Sun DS, Wu JC, Lin YY, Lin GL, Chang HH. Exposure of Platelets to Dengue Virus and Envelope Protein Domain III Induces Nlrp3 Inflammasome-Dependent Platelet Cell Death and Thrombocytopenia in Mice. Front Immunol 2021; 12:616394. [PMID: 33995345 PMCID: PMC8118162 DOI: 10.3389/fimmu.2021.616394] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
In tropical and subtropical regions, mosquito-borne dengue virus (DENV) infections can lead to severe dengue, also known as dengue hemorrhage fever, which causes bleeding, thrombocytopenia, and blood plasma leakage and increases mortality. Although DENV-induced platelet cell death was linked to disease severity, the role of responsible viral factors and the elicitation mechanism of abnormal platelet activation and cell death remain unclear. DENV and virion-surface envelope protein domain III (EIII), a cellular binding moiety of the virus particle, highly increase during the viremia stage. Our previous report suggested that exposure to such viremia EIII levels can lead to cell death of endothelial cells, neutrophils, and megakaryocytes. Here we found that both DENV and EIII could induce abnormal platelet activation and predominantly necrotic cell death pyroptosis. Blockages of EIII-induced platelet signaling using the competitive inhibitor chondroitin sulfate B or selective Nlrp3 inflammasome inhibitors OLT1177 and Z-WHED-FMK markedly ameliorated DENV- and EIII-induced thrombocytopenia, platelet activation, and cell death. These results suggest that EIII could be considered as a virulence factor of DENV, and that Nlrp3 inflammasome is a feasible target for developing therapeutic approaches against dengue-induced platelet defects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
19
|
Lien TS, Sun DS, Hung SC, Wu WS, Chang HH. Dengue Virus Envelope Protein Domain III Induces Nlrp3 Inflammasome-Dependent NETosis-Mediated Inflammation in Mice. Front Immunol 2021; 12:618577. [PMID: 33815373 PMCID: PMC8009969 DOI: 10.3389/fimmu.2021.618577] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
Abnormal immune responses and cytokine storm are involved in the development of severe dengue, a life-threatening disease with high mortality. Dengue virus-induced neutrophil NETosis response is associated with cytokine storm; while the role of viral factors on the elicitation of excessive inflammation mains unclear. Here we found that treatments of dengue virus envelope protein domain III (EIII), cellular binding moiety of virion, is sufficient to induce neutrophil NETosis processes in vitro and in vivo. Challenges of EIII in inflammasome Nlrp3-/- and Casp1-/- mutant mice resulted in less inflammation and NETosis responses, as compared to the wild type controls. Blockages of EIII-neutrophil interaction using cell-binding competitive inhibitor or selective Nlrp3 inflammasome inhibitors OLT1177 and Z-WHED-FMK can suppress EIII-induced NETosis response. These results collectively suggest that Nlrp3 inflammsome is a molecular target for treating dengue-elicited inflammatory pathogenesis.
Collapse
Affiliation(s)
- Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Shih-Che Hung
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|