1
|
Nkurikiyimfura O, Waheed A, Fang H, Yuan X, Chen L, Wang YP, Lu G, Zhan J, Yang L. Fitness difference between two synonymous mutations of Phytophthora infestans ATP6 gene. BMC Ecol Evol 2024; 24:36. [PMID: 38494489 PMCID: PMC10946160 DOI: 10.1186/s12862-024-02223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Sequence variation produced by mutation provides the ultimate source of natural selection for species adaptation. Unlike nonsynonymous mutation, synonymous mutations are generally considered to be selectively neutral but accumulating evidence suggests they also contribute to species adaptation by regulating the flow of genetic information and the development of functional traits. In this study, we analysed sequence characteristics of ATP6, a housekeeping gene from 139 Phytophthora infestans isolates, and compared the fitness components including metabolic rate, temperature sensitivity, aggressiveness, and fungicide tolerance among synonymous mutations. RESULTS We found that the housekeeping gene exhibited low genetic variation and was represented by two major synonymous mutants at similar frequency (0.496 and 0.468, respectively). The two synonymous mutants were generated by a single nucleotide substitution but differed significantly in fitness as well as temperature-mediated spatial distribution and expression. The synonymous mutant ending in AT was more common in cold regions and was more expressed at lower experimental temperature than the synonymous mutant ending in GC and vice versa. CONCLUSION Our results are consistent with the argument that synonymous mutations can modulate the adaptive evolution of species including pathogens and have important implications for sustainable disease management, especially under climate change.
Collapse
Affiliation(s)
- Oswald Nkurikiyimfura
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Abdul Waheed
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Hanmei Fang
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaoxian Yuan
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lixia Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yan-Ping Wang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, 611130, China
| | - Guodong Lu
- Department of Plant Pathology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden.
| | - Lina Yang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
2
|
Yasmin S, Kumar S, Azad GK. A computational study on mitogenome-encoded proteins of Pavo cristatus and Pavo muticus identifies key genetic variations with functional implications. J Genet Eng Biotechnol 2023; 21:80. [PMID: 37544976 PMCID: PMC10404576 DOI: 10.1186/s43141-023-00534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND The Pavo cristatus population, native to the Indian subcontinent, is thriving well in India. However, the Pavo muticus population, native to the tropical forests of Southeast Asia, has reduced drastically and has been categorised as an endangered group. To understand the probable genetic factors associated with the decline of P. muticus, we compared the mitogenome-encoded proteins (13 proteins) between these two species. RESULTS Our data revealed that the most frequent variant between these two species was mtND1, which had an alteration in 9.57% residues, followed by mtND5 and mtATP6. We extended our study on the rest of the proteins and observed that cytochrome c oxidase subunits 1, 2, and 3 do not have any change. The 3-dimensional structure of all 13 proteins was modeled using the Phyre2 programme. Our data show that most of the proteins are alpha helical, and the variations observed in P. muticus reside on the surface of the respective proteins. The effect of variation on protein function was also predicted, and our results show that amino acid substitution in mtND1 at 14 sites could be deleterious. Similarly, destabilising changes were observed in mtND1, 2, 3, 4, 5, and 6 and mtATP6-8 due to amino acid substitution in P. muticus. Furthermore, protein disorder scores were considerably altered in mtND1, 2, and 5 of P. muticus. CONCLUSIONS The results presented here strongly suggest that variations in mitogenome-encoded proteins of P. cristatus and P. muticus may alter their structure and functions. Subsequently, these variations could alter energy production and may correlate with the decline in the population of P. muticus.
Collapse
Affiliation(s)
- Shahla Yasmin
- Department of Zoology, Patna University, Patna, Bihar, India
| | - Sushant Kumar
- Molecular Biology Laboratory, Department of Zoology, Patna University, Patna, 800005, Bihar, India
| | - Gajendra Kumar Azad
- Molecular Biology Laboratory, Department of Zoology, Patna University, Patna, 800005, Bihar, India.
| |
Collapse
|
3
|
Katyal G, Ebanks B, Dowle A, Shephard F, Papetti C, Lucassen M, Chakrabarti L. Quantitative Proteomics and Network Analysis of Differentially Expressed Proteins in Proteomes of Icefish Muscle Mitochondria Compared with Closely Related Red-Blooded Species. BIOLOGY 2022; 11:biology11081118. [PMID: 35892974 PMCID: PMC9330239 DOI: 10.3390/biology11081118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary Antarctic icefish are unusual in that they are the only vertebrates that survive without the protein haemoglobin. One way to try and understand the biological processes that support this anomaly is to record how proteins are regulated in these animals and to compare what we find to closely related Antarctic fish that do still retain haemoglobin. The part of the cell that most clearly utilises oxygen, which is normally transported by haemoglobin, is the mitochondrion. Therefore, we chose to catalogue all the proteins and their relative quantities in the mitochondria (pl.) from two different muscle types in two species of icefish and two species of red-blooded notothenioids. We used an approach called mass spectrometry to reveal relative amounts of the proteins from the muscles of each fish. We present analysis that shows how the connections and relative quantities of proteins differ between these species. Abstract Antarctic icefish are extraordinary in their ability to thrive without haemoglobin. We wanted to understand how the mitochondrial proteome has adapted to the loss of this protein. Metabolic pathways that utilise oxygen are most likely to be rearranged in these species. Here, we have defined the mitochondrial proteomes of both the red and white muscle of two different icefish species (Champsocephalus gunnari and Chionodraco rastrospinosus) and compared these with two related red-blooded Notothenioids (Notothenia rossii, Trematomus bernacchii). Liquid Chromatography-Mass spectrometry (LC-MS/MS) was used to generate and examine the proteomic profiles of the two groups. We recorded a total of 91 differentially expressed proteins in the icefish red muscle mitochondria and 89 in the white muscle mitochondria when compared with the red-blooded related species. The icefish have a relatively higher abundance of proteins involved with Complex V of oxidative phosphorylation, RNA metabolism, and homeostasis, and fewer proteins for striated muscle contraction, haem, iron, creatine, and carbohydrate metabolism. Enrichment analyses showed that many important pathways were different in both red muscle and white muscle, including the citric acid cycle, ribosome machinery and fatty acid degradation. Life in the Antarctic waters poses extra challenges to the organisms that reside within them. Icefish have successfully inhabited this environment and we surmise that species without haemoglobin uniquely maintain their physiology. Our study highlights the mitochondrial protein pathway differences between similar fish species according to their specific tissue oxygenation idiosyncrasies.
Collapse
Affiliation(s)
- Gunjan Katyal
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK; (G.K.); (B.E.); (F.S.)
| | - Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK; (G.K.); (B.E.); (F.S.)
| | - Adam Dowle
- Department of Biology, Bioscience Technology Facility, University of York, York YO10 5DD, UK;
| | - Freya Shephard
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK; (G.K.); (B.E.); (F.S.)
| | - Chiara Papetti
- Biology Department, University of Padova, Via U. Bassi, 58/b, 35121 Padova, Italy;
| | | | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK; (G.K.); (B.E.); (F.S.)
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Liverpool L7 8TX, UK
- Correspondence:
| |
Collapse
|
4
|
Ebanks B, Katyal G, Lucassen M, Papetti C, Chakrabarti L. Proteomic analysis of the ATP synthase interactome in notothenioids highlights a pathway that inhibits ceruloplasmin production. Am J Physiol Regul Integr Comp Physiol 2022; 323:R181-R192. [PMID: 35639858 PMCID: PMC9291420 DOI: 10.1152/ajpregu.00069.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antarctic notothenioids have unique adaptations that allow them to thrive in sub-zero Antarctic waters. Within the suborder Notothenioidei, species of the family Channichthyidae (icefish) lack haemoglobin and in some instances myoglobin too. In studies of mitochondrial function of notothenioids, few have focussed specifically on ATP synthase. In this study, we find that the icefish Champsocephalus gunnari has a significantly higher level of ATP synthase subunit α expression than in red-blooded Notothenia rossii, but a much smaller interactome than the other species. We characterise the interactome of ATP synthase subunit a in two red-blooded species Trematomus bernacchii, N. rossii, and in the icefish Chionodraco rastrospinosus, and C. gunnari and find that in comparison with the other species, reactome enrichment for C. gunnari lacks chaperonin-mediated protein folding, and fewer oxidative-stress-associated proteins are present in the identified interactome of C. gunnari. Reactome enrichment analysis also identifies a transcript-specific translational silencing pathway for the iron oxidase protein ceruloplasmin, which has previously been reported in studies of icefish as distinct from other red-blooded fish and vertebrates in its activity and RNA transcript expression. Ceruloplasmin protein expression is detected by Western blot in the liver of T. bernacchii, but not in N. rossii, C. rastrospinosus, and C. gunnari. We suggest that the translation of ceruloplasmin transcripts is silenced by the identified pathway in icefish notothenioids, which is indicative of altered iron metabolism and Fe(II) detoxification.
Collapse
Affiliation(s)
- Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Gunjan Katyal
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | | | | | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, United Kingdom
| |
Collapse
|