1
|
Ram T, Singh AK, Kumar A, Singh H, Pathak P, Grishina M, Khalilullah H, Jaremko M, Emwas AH, Verma A, Kumar P. MEK inhibitors in cancer treatment: structural insights, regulation, recent advances and future perspectives. RSC Med Chem 2023; 14:1837-1857. [PMID: 37859720 PMCID: PMC10583825 DOI: 10.1039/d3md00145h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/12/2023] [Indexed: 10/21/2023] Open
Abstract
MEK1/2 are critical components of the RAS-RAF-MEK-ERK or MAPK signalling pathway that regulates a variety of cellular functions including proliferation, survival, and differentiation. In 1997, a lung cancer cell line was first found to have a MEK mutation (encoding MEK2P298L). MEK is involved in various human cancers such as non-small cell lung cancer (NSCLC), spurious melanoma, and pancreatic, colorectal, basal, breast, and liver cancer. To date, 4 MEK inhibitors i.e., trametinib, cobimetinib, selumetinib, and binimetinib have been approved by the FDA and several are under clinical trials. In this review, we have highlighted structural insights into the MEK1/2 proteins, such as the αC-helix, catalytic loop, P-loop, F-helix, hydrophobic pocket, and DFG motif. We have also discussed current issues with all FDA-approved MEK inhibitors or drugs under clinical trials and combination therapies to improve the efficacy of clinical drugs. Finally, this study addressed recent developments on synthetic MEK inhibitors (from their discovery in 1997 to 2022), their unique properties, and their relevance to MEK mutant inhibition.
Collapse
Affiliation(s)
- Teja Ram
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
- Pharmaceutical Analysis and Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy at "Hyderabad Campus", GITAM (Deemed to be University) India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University Unayzah 51911 Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Amita Verma
- Bioorganic and Med. Chem. Res., Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
2
|
Pipek O, Vizkeleti L, Doma V, Alpár D, Bödör C, Kárpáti S, Timar J. The Driverless Triple-Wild-Type (BRAF, RAS, KIT) Cutaneous Melanoma: Whole Genome Sequencing Discoveries. Cancers (Basel) 2023; 15:cancers15061712. [PMID: 36980598 PMCID: PMC10046270 DOI: 10.3390/cancers15061712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
The genetic makeup of the triple-wild-type melanoma (BRAF, NRAS and NF1) has been known for some time, but those studies grouped together rare histopathological versions with common ones, as well as mucosal and even uveal ones. Here we used whole genome sequencing to genetically characterize the triple-wild-type melanoma (TWM), termed here as BRAF, RAS and KIT wild type (the most frequent oncogenic drivers of skin melanoma), using the most common histological forms and excluding rare ones. All these tumors except one were clearly induced by UV based on the mutational signature. The tumor mutational burden was low in TWM, except in the NF1 mutant forms, and a relatively high frequency of elevated LOH scores suggested frequent homologue recombination deficiency, but this was only confirmed by the mutation signature in one case. Furthermore, all these TWMs were microsatellite-stabile. In this driverless setting, we revealed rare oncogenic drivers known from melanoma or other cancer types and identified rare actionable tyrosine kinase mutations in NTRK1, RET and VEGFR1. Mutations of TWM identified genes involved in antitumor immunity (negative and positive predictors of immunotherapy), Ca++ and BMP signaling. The two regressed melanomas of this cohort shared a 17-gene mutation signature, containing genes involved in antitumor immunity and several cell surface receptors. Even with this comprehensive genomic approach, a few cases remained driverless, suggesting that unrecognized drivers are hiding among passenger mutations.
Collapse
Affiliation(s)
- Orsolya Pipek
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, 1053 Budapest, Hungary
| | - Laura Vizkeleti
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1085 Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, 1085 Budapest, Hungary
| | - Viktória Doma
- Department of Dermatology, Venerology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| | - Donát Alpár
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Csaba Bödör
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Sarolta Kárpáti
- Department of Dermatology, Venerology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| | - Jozsef Timar
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1085 Budapest, Hungary
- Correspondence:
| |
Collapse
|
3
|
Budhraja KK, McDonald BR, Stephens MD, Contente-Cuomo T, Markus H, Farooq M, Favaro PF, Connor S, Byron SA, Egan JB, Ernst B, McDaniel TK, Sekulic A, Tran NL, Prados MD, Borad MJ, Berens ME, Pockaj BA, LoRusso PM, Bryce A, Trent JM, Murtaza M. Genome-wide analysis of aberrant position and sequence of plasma DNA fragment ends in patients with cancer. Sci Transl Med 2023; 15:eabm6863. [PMID: 36630480 PMCID: PMC10080578 DOI: 10.1126/scitranslmed.abm6863] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/16/2022] [Indexed: 01/13/2023]
Abstract
Genome-wide fragmentation patterns in cell-free DNA (cfDNA) in plasma are strongly influenced by cellular origin due to variation in chromatin accessibility across cell types. Such differences between healthy and cancer cells provide the opportunity for development of novel cancer diagnostics. Here, we investigated whether analysis of cfDNA fragment end positions and their surrounding DNA sequences reveals the presence of tumor-derived DNA in blood. We performed genome-wide analysis of cfDNA from 521 samples and analyzed sequencing data from an additional 2147 samples, including healthy individuals and patients with 11 different cancer types. We developed a metric based on genome-wide differences in fragment positioning, weighted by fragment length and GC content [information-weighted fraction of aberrant fragments (iwFAF)]. We observed that iwFAF strongly correlated with tumor fraction, was higher for DNA fragments carrying somatic mutations, and was higher within genomic regions affected by copy number amplifications. We also calculated sample-level means of nucleotide frequencies observed at genomic positions spanning fragment ends. Using a combination of iwFAF and nine nucleotide frequencies from three positions surrounding fragment ends, we developed a machine learning model to differentiate healthy individuals from patients with cancer. We observed an area under the receiver operative characteristic curve (AUC) of 0.91 for detection of cancer at any stage and an AUC of 0.87 for detection of stage I cancer. Our findings remained robust with as few as 1 million fragments analyzed per sample, demonstrating that analysis of fragment ends can become a cost-effective and accessible approach for cancer detection and monitoring.
Collapse
Affiliation(s)
- Karan K. Budhraja
- Department of Surgery and Center for Human Genomics and Precision Medicine, University of Wisconsin–Madison; Madison, WI 53705, USA
| | - Bradon R. McDonald
- Department of Surgery and Center for Human Genomics and Precision Medicine, University of Wisconsin–Madison; Madison, WI 53705, USA
| | - Michelle D. Stephens
- Department of Surgery and Center for Human Genomics and Precision Medicine, University of Wisconsin–Madison; Madison, WI 53705, USA
| | | | - Havell Markus
- Pennsylvania State University, Hershey, PA 17033, USA
| | - Maria Farooq
- Department of Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patricia F. Favaro
- Department of Surgery and Center for Human Genomics and Precision Medicine, University of Wisconsin–Madison; Madison, WI 53705, USA
| | - Sydney Connor
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Sara A. Byron
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | | | | | | | | - Michael D. Prados
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | - Jeffrey M. Trent
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Muhammed Murtaza
- Department of Surgery and Center for Human Genomics and Precision Medicine, University of Wisconsin–Madison; Madison, WI 53705, USA
| |
Collapse
|
4
|
Ji L, Whangbo J, Levine JE, Alonzo TA. Inefficiency of two-stage designs in phase II oncology clinical trials with high proportion of inevaluable patients. Contemp Clin Trials 2022; 120:106849. [PMID: 35868503 PMCID: PMC9489679 DOI: 10.1016/j.cct.2022.106849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/09/2022] [Accepted: 07/08/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Two-stage designs are commonly used for oncology Phase II clinical trials with a binary response endpoint. An issue that has not gained sufficient attention is the potential inefficiency in the usage of two-stage designs due to multiple enrollment suspensions when the proportion of patients inevaluable for response is high. METHODS Simulation studies were used to assess the performance of Simon's two-stage designs, two-stage designs with a proposed modification, and a single-stage design in the context of Phase II clinical trials with a high proportion of patients inevaluable for response. RESULTS Two-stage designs can require multiple enrollment disruptions when the inevaluable proportion is high, which can result in unacceptable inefficiency. The proposed modification provides a practical solution to this issue by enrolling an extra number of patients towards the end of the 1st stage, anticipating that a proportion of the patients pending response evaluation could be inevaluable. Single-stage designs with interim monitoring of futility that require no interim accrual suspension can be more efficient than two-stage designs, especially when the accrual and inevaluable rates are high. CONCLUSIONS Planning of Phase II trials should consider the issue of inefficiency of the two-stage designs, especially for trials with a high inevaluable proportion. Designs with monitoring rules that do not require accrual suspensions may be given more considerations, especially in trials of agents that have already had some evidence for safety and efficacy in other populations.
Collapse
Affiliation(s)
- Lingyun Ji
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America.
| | - Jennifer Whangbo
- Division of Hematology-Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, United States of America
| | - John E Levine
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Todd A Alonzo
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
5
|
Drenner K, Basu GD, Goodman LJ, Ozols AA, LoBello JR, Royce T, Gordon MS, Borazanci EH, Steinbach MA, Trent J, Sharma S. The value of comprehensive genomic sequencing to maximize the identification of clinically actionable alterations in advanced cancer patients: a case series. Oncotarget 2021; 12:1836-1847. [PMID: 34504655 PMCID: PMC8416559 DOI: 10.18632/oncotarget.28046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023] Open
Abstract
PURPOSE We present seven cases of advanced cancer patients who initially underwent tumor testing utilizing smaller, panel-based tests, followed by a variety of therapeutic treatments which ultimately resulted in progression of their disease. These cases demonstrate the value of utilizing WES/RNA seq and characterization following disease progression in these patients and the determination of clinically targetable alterations as well as acquired resistance mutations. MATERIALS AND METHODS All patients are part of an IRB approved observational study. WES and RNA sequencing were performed, using GEM ExTra® on tumor and blood samples obtained during routine clinical care. To accurately determine somatic versus germline alterations the test was performed with paired normal testing from peripheral blood. RESULTS The presented cases demonstrate the clinical impact of actionable findings uncovered using GEM ExTra® in patients with advanced disease who failed many rounds of treatment. Unique alterations were identified resulting in newly identified potential targeted therapies, mechanisms of resistance, and variation in the genomic characterization of the primary versus the metastatic tumor. CONCLUSIONS Taken together our results demonstrate that GEM ExTra® maximizes detection of actionable mutations, thus allowing for appropriate treatment selection for patients harboring both common and rare genomic alterations.
Collapse
Affiliation(s)
- Kevin Drenner
- Translational Genomic Research Institute (Tgen), Phoenix, AZ 85004, USA
- These authors contributed equally to this work
| | - Gargi D. Basu
- Ashion Analytics, LLC, Phoenix, AZ 85004, USA
- These authors contributed equally to this work
| | | | | | | | | | | | | | | | - Jeffrey Trent
- Translational Genomic Research Institute (Tgen), Phoenix, AZ 85004, USA
| | - Sunil Sharma
- Translational Genomic Research Institute (Tgen), Phoenix, AZ 85004, USA
| |
Collapse
|