1
|
Atiakshin D, Kostin A, Shishkina V, Burtseva A, Buravleva A, Volodkin A, Elieh-Ali-Komi D, Buchwalow I, Tiemann M. Space-Flight- and Microgravity-Dependent Alteration of Mast Cell Population and Protease Expression in Digestive Organs of Mongolian Gerbils. Int J Mol Sci 2023; 24:13604. [PMID: 37686410 PMCID: PMC10488096 DOI: 10.3390/ijms241713604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Mast cell (MC)-specific proteases are of particular interest for space biology and medicine due to their biological activity in regulating targets of a specific tissue microenvironment. MC tryptase and chymase obtain the ability to remodel connective tissue through direct and indirect mechanisms. Yet, MC-specific protease expression under space flight conditions has not been adequately investigated. Using immunohistochemical stainings, we analyzed in this study the protease profile of the jejunal, gastric, and hepatic MC populations in three groups of Mongolian gerbils-vivarium control, synchronous experiment, and 12-day orbital flight on the Foton-M3 spacecraft-and in two groups-vivarium control and anti-orthostatic suspension-included in the experiment simulating effects of weightlessness in the ground-based conditions. After a space flight, there was a decreased number of MCs in the studied organs combined with an increased proportion of chymase-positive MCs and MCs with a simultaneous content of tryptase and chymase; the secretion of specific proteases into the extracellular matrix increased. These changes in the expression of proteases were observed both in the mucosal and connective tissue MC subpopulations of the stomach and jejunum. Notably, the relative content of tryptase-positive MCs in the studied organs of the digestive system decreased. Space flight conditions simulated in the synchronous experiment caused no similar significant changes in the protease profile of MC populations. The space flight conditions resulted in an increased chymase expression combined with a decreased total number of protease-positive MCs, apparently due to participating in the processes of extracellular matrix remodeling and regulating the state of the cardiovascular system.
Collapse
Affiliation(s)
- Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-structural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (D.A.); (A.K.); (A.V.)
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia; (V.S.); (A.B.); (A.B.)
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-structural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (D.A.); (A.K.); (A.V.)
| | - Viktoriya Shishkina
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia; (V.S.); (A.B.); (A.B.)
| | - Alexandra Burtseva
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia; (V.S.); (A.B.); (A.B.)
| | - Anastasia Buravleva
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia; (V.S.); (A.B.); (A.B.)
| | - Artem Volodkin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-structural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (D.A.); (A.K.); (A.V.)
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-structural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (D.A.); (A.K.); (A.V.)
- Institute for Hematopathology, 22547 Hamburg, Germany;
| | | |
Collapse
|
2
|
Kamli H, Owens EP, Vesey DA, Prasanna R, Li L, Gobe GC, Morais C. Overcoming sunitinib resistance with tocilizumab in renal cell carcinoma: Discordance between in vitro and in vivo effects. Biochem Biophys Res Commun 2022; 586:42-48. [PMID: 34826699 DOI: 10.1016/j.bbrc.2021.11.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
Sunitinib is one of the first-line multi-tyrosine kinase inhibitors for metastatic renal cell carcinoma, and resistance to sunitinib continues to be a limiting factor for the successful treatment. As interleukin-6 (IL-6) is overexpressed in sunitinib-resistant cells, the purpose of this study was to explore the potential of IL-6 inhibition with tocilizumab, an IL-6 receptor inhibitor, to overcome resistance. In vitro, two sunitinib-resistant renal cell carcinoma cell lines (Caki-1 and SN12K1) were treated with tocilizumab. A mouse subcutaneous xenograft model was also used. Cell viability was studied by MTT assay, and apoptosis by morphology and ApopTag. Expression of IL-6, vascular endothelial growth factor (VEGF), and Bcl-2 was analyzed by qPCR. In vitro, tocilizumab induced significant cell death, and reduced the expression of IL-6, VEGF, and Bcl-2 in sunitinib-resistant cells. However, the in vitro findings could not be successfully translated in vivo, as tocilizumab did not decrease the growth of the tumors.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Antineoplastic Agents/pharmacology
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cell Survival/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Male
- Mice, Nude
- Neoplasm Metastasis
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Signal Transduction
- Sunitinib/pharmacology
- Tumor Burden/drug effects
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Hossam Kamli
- Centre for Kidney Disease Research, The University of Queensland, Translational Research Institute, Brisbane, Australia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Evan P Owens
- Centre for Kidney Disease Research, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - David A Vesey
- Centre for Kidney Disease Research, The University of Queensland, Translational Research Institute, Brisbane, Australia; Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Rajagopalan Prasanna
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Li Li
- Institute for Translational Research, Ochsner Clinical School, University Queensland School of Medicine, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Glenda C Gobe
- Centre for Kidney Disease Research, The University of Queensland, Translational Research Institute, Brisbane, Australia.
| | - Christudas Morais
- Department of Urology, Princess Alexandra Hospital, Brisbane, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
3
|
Isaacs LL. Pancreatic Proteolytic Enzymes and Cancer: New Support for an Old Theory. Integr Cancer Ther 2022; 21:15347354221096077. [PMID: 35514109 PMCID: PMC9083047 DOI: 10.1177/15347354221096077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In 1905, the embryologist John Beard first proposed that pancreatic proteolytic enzymes had potential as a treatment for cancer. His theories were dismissed by the medical world a decade later, but various practitioners have kept the concept alive through the publication of case reports of cancer patients treated with pancreatic proteolytic enzymes. In the last 2 decades, studies of the role of proteases in physiology have made it clear that they do more than digest food. This article reviews the history of the clinical use of pancreatic proteolytic enzymes in cancer treatment, and recent research on protease activated receptors and their role in cancer.
Collapse
|