1
|
Betancourtt C, Catalán AM, Morales-Torres DF, Lopez DN, Escares-Aguilera V, Salas-Yanquin LP, Büchner-Miranda JA, Chaparro OR, Nimptsch J, Broitman BR, Valdivia N. Transient species driving ecosystem multifunctionality: Insights from competitive interactions between rocky intertidal mussels. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106422. [PMID: 38437777 DOI: 10.1016/j.marenvres.2024.106422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Anthropogenic biodiversity loss poses a significant threat to ecosystem functioning worldwide. Numerically dominant and locally rare (i.e., transient) species are key components of biodiversity, but their contribution to multiple ecosystem functions (i.e., multifunctionality) has been seldomly assessed in marine ecosystems. To fill this gap, here we analyze the effects of a dominant and a transient species on ecosystem multifunctionality. In an observational study conducted along ca. 200 km of the southeastern Pacific coast, the purple mussel Perumytilus purpuratus numerically dominated the mid-intertidal and the dwarf mussel Semimytilus patagonicus exhibited low abundances but higher recruitment rates. In laboratory experiments, the relative abundances of both species were manipulated to simulate the replacement of P. purpuratus by S. patagonicus and five proxies for ecosystem functions-rates of clearance, oxygen consumption, total biodeposit, organic biodeposit, and excretion-were analyzed. This replacement had a positive, linear, and significant effect on the combined ecosystem functions, particularly oxygen consumption and excretion rates. Accordingly, S. patagonicus could well drive ecosystem functioning given favorable environmental conditions for its recovery from rarity. Our study highlights therefore the key role of transient species for ecosystem performance. Improving our understanding of these dynamics is crucial for effective ecosystem conservation, especially in the current scenario of biological extinctions and invasions.
Collapse
Affiliation(s)
- Claudia Betancourtt
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile; Programa de Doctorado en Biología Marina, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| | - Alexis M Catalán
- Centro de Investigación en Ecosistemas de la Patagonia, CIEP, Coyhaique, Chile
| | - Diego F Morales-Torres
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Daniela N Lopez
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile; Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Escares-Aguilera
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Luis P Salas-Yanquin
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Unidad Multidisciplinaria de Docencia e Investigación, Sisal, Mexico
| | - Joseline A Büchner-Miranda
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Oscar R Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Jorge Nimptsch
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Bernardo R Broitman
- Instituto Milenio en Socio-Ecología Costera (SECOS), Chile; Núcleo Milenio UPWELL, Chile; Facultad de Artes Liberales, Universidad Adolfo Ibañez, Viña Del Mar, Chile
| | - Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile; Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL), Chile
| |
Collapse
|
2
|
Paredes-Molina FJ, Chaparro OR, Navarro JM, Cubillos VM, Paschke K, Márquez F, Averbuj A, Zabala MS, Bökenhans V, Pechenik JA. Upwelling as a stressor event during embryonic development: Consequences for encapsulated and early juvenile stages of the marine gastropod Acanthina monodon. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106270. [PMID: 38011827 DOI: 10.1016/j.marenvres.2023.106270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Upwelling phenomena alter the physical and chemical parameters of the sea's subsurface waters, producing low levels of temperature, pH and dissolved oxygen, which can seriously impact the early developmental stages of marine organisms. To understand how upwelling can affect the encapsulated development of the gastropod Acanthina monodon, capsules containing embryos at different stages of development (initial, intermediate and advanced) were exposed to upwelling conditions (pH = 7.6; O2 = 3 mg L-1; T° = 9 °C) for a period of 7 days. Effects of treatment were determined by estimating parameters such as time to hatching, number of hatchlings per capsule, percentage of individuals with incomplete development, and shell parameters such as shell shape and size, shell strength, and the percentage of the organic/inorganic content. We found no significant impacts on hatching time, number of hatchlings per capsule, or percentage of incomplete development in either the presence or absence of upwelling, regardless of developmental stage. On the other hand, latent effects on encapsulated stages of A. monodon were detected in embryos that had been exposed to upwelling stress in the initial embryonic stage. The juveniles from this treatment hatched at smaller sizes and with higher organic content in their shells, resulting in a higher resistance to cracking 30 days after hatching, due to greater elasticity. Geometric morphometric analysis showed that exposure to upwelling condition induced a change in the morphology of shell growth in all post-hatching juveniles (0-30 days), regardless of embryonic developmental stage at the time of exposure. Thus, more elongated shells (siphonal canal and posterior region) and more globular shells were observed in newly hatched juveniles that had been exposed to the upwelling condition. The neutral or even positive upwelling exposure results suggests that exposure to upwelling events during the encapsulated embryonic phase of A. monodon development might not have major impacts on the future juvenile stages. However, this should be taken with caution in consideration of the increased frequency and intensity of upwelling events predicted for the coming decades.
Collapse
Affiliation(s)
- F J Paredes-Molina
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
| | - O R Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - J M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - V M Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - K Paschke
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Chile
| | - F Márquez
- Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM)-IBIOMAR, CCT, CONICET-CENPAT, Puerto Madryn, Chubut, Argentina; Universidad Nacional de La Patagonia San Juan Bosco (UNPSJB), Puerto Madryn, Argentina
| | - A Averbuj
- Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM)-IBIOMAR, CCT, CONICET-CENPAT, Puerto Madryn, Chubut, Argentina
| | - M S Zabala
- Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM)-IBIOMAR, CCT, CONICET-CENPAT, Puerto Madryn, Chubut, Argentina
| | - V Bökenhans
- Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM)-IBIOMAR, CCT, CONICET-CENPAT, Puerto Madryn, Chubut, Argentina
| | - J A Pechenik
- Biology Department, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
3
|
Paredes-Molina FJ, Chaparro OR, Navarro JM, Cubillos VM, Montory JA, Pechenik JA. Embryonic encapsulated development of the gastropod Acanthina monodon is impacted by future environmental changes of temperature and pCO 2. MARINE ENVIRONMENTAL RESEARCH 2023; 187:105971. [PMID: 37004497 DOI: 10.1016/j.marenvres.2023.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Egg capsules of the gastropod Acanthina monodon were maintained during the entire period of encapsulated development at three temperatures (10, 15, 20 °C) and two pCO2 levels (400, 1200 μatm). Embryos per capsule, size at hatching, time to hatching, embryonic metabolic rates, and the resistance of juveniles to shell breakage were quantified. No embryos maintained at 20 °C developed to hatching. The combination of temperature and pCO2 levels had synergistic effects on hatching time and developmental success, antagonistic effects on number of hatchlings per capsule, resistance to juvenile shell cracking and metabolism, and additive effect on hatching size. Juveniles hatched significantly sooner at 15 °C, independent of the pCO2 level that they had been exposed to, while individuals hatched at significantly smaller sizes if they had been held under 15 °C/1200 μatm rather than at 10 °C/low pCO2. Embryos held at the higher pCO2 had a significantly greater percentage of abnormalities. For capsules maintained at low pCO2 and 15 °C, emerging juveniles had less resistance to shell breakage. Embryonic metabolism was significantly higher at 15 °C than at 10 °C, independent of pCO2 level. The lower metabolism occurred in embryos maintained at the higher pCO2 level. Thus, in this study, temperature was the factor that had the greatest effect on the encapsulated development of A. monodon, increasing the metabolism of the embryos and consequently accelerating development, which was expressed in a shorter intracapsular development time, but with smaller individuals at hatching and a lower resistance of their shells to breakage. On the other hand, the high pCO2 level suppressed metabolism, prolonged intracapsular development, and promoted more incomplete development of the embryos. However, the combination of the two factors can mitigate--to some extent--the adverse effects of both incomplete development and lower resistance to shell breakage.
Collapse
Affiliation(s)
- F J Paredes-Molina
- Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Valdivia, Chile.
| | - O R Chaparro
- Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Valdivia, Chile
| | - J M Navarro
- Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - V M Cubillos
- Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Valdivia, Chile
| | - J A Montory
- Centro i∼mar, Universidad De Los Lagos, Casilla 557, Puerto Montt, Chile
| | - J A Pechenik
- Biology Department, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
4
|
Riedemann-Saldivia B, Büchner-Miranda JA, Salas-Yanquin LP, Valdivia N, Catalán AM, Scrosati RA, Chaparro OR. Non-consumptive effects of a predatory snail (Acanthina monodon) on a dominant habitat-forming mussel species (Perumytilus purpuratus). MARINE ENVIRONMENTAL RESEARCH 2022; 175:105573. [PMID: 35134640 DOI: 10.1016/j.marenvres.2022.105573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Predators can influence prey through direct consumption as well as through non-consumptive effects (NCEs). NCEs usually occur mediated by behavioral changes in the prey upon detection of predator cues. Such changes may involve reduction of feeding with a variety of physiological consequences. We evaluated NCEs from an intertidal predatory snail (Acanthina monodon) on a dominant habitat-forming mussel species (Perumytilus purpuratus) from the southeastern Pacific coast. We tested whether A. monodon exerts negative NCEs on clearance rate, oxygen consumption rate, biodeposit production, and between-valve gap size in P. purpuratus. We found that waterborne predator cues triggered a decrease in these variables except biodeposit production. However, the organic content of the biodeposits increased in the presence of predator cues. The snail's physical contact with the mussels strengthened the negative NCEs on between-valve gap size. Since P. purpuratus is a dominant filter-feeder and foundation species in rocky intertidal habitats, predator NCEs on this species might indirectly influence ecosystem-level processes and community structure.
Collapse
Affiliation(s)
| | | | - Luis P Salas-Yanquin
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, 5090000, Valdivia, Chile; Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL), 5090000, Valdivia, Chile
| | - Alexis M Catalán
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - Ricardo A Scrosati
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, B2G 2W5, Canada
| | - Oscar R Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, 5090000, Valdivia, Chile.
| |
Collapse
|