1
|
Devi J, Sagar V, Mishra GP, Jha PK, Gupta N, Dubey RK, Singh PM, Behera TK, Prasad PVV. Heat stress tolerance in peas ( Pisum sativum L.): Current status and way forward. FRONTIERS IN PLANT SCIENCE 2023; 13:1108276. [PMID: 36733601 PMCID: PMC9887200 DOI: 10.3389/fpls.2022.1108276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
In the era of climate change, the overall productivity of pea (Pisum sativum L.) is being threatened by several abiotic stresses including heat stress (HS). HS causes severe yield losses by adversely affecting several traits in peas. A reduction in pod yield has been reported from 11.1% to 17.5% when mean daily temperature increase from 1.4 to 2.2°C. High-temperature stress (30.5-33°C) especially during reproductive phase is known to drastically reduce both seed yield and germination. HS during germination and early vegetative stage resulted in poor emergence and stunted plant growth along with detrimental effects on physiological functions of the pea plant. To combat HS and continue its life cycle, plants use various defense strategies including heat escape, avoidance or tolerance mechanisms. Ironically, the threshold temperatures for pea plant and its responses are inconsistent and not yet clearly identified. Trait discovery through traditional breeding such as semi leaflessness (afila), upright growing habit, lodging tolerance, lower canopy temperature and small seeded nature has highlighted their utility for greater adaptation under HS in pea. Screening of crop gene pool and landraces for HS tolerance in a targeted environment is a simple approach to identify HS tolerant genotypes. Thus, precise phenotyping using modern phenomics tools could lead to increased breeding efficiency. The NGS (next generation sequencing) data can be associated to find the candidate genes responsible for the HS tolerance in pea. In addition, genomic selection, genome wide association studies (GWAS) and marker assisted selection (MAS) can be used for the development of HS tolerant pea genotypes. Additionally, development of transgenics could be an alternative strategy for the development of HS tolerant pea genotypes. This review comprehensively covers the various aspects of HS tolerance mechanisms in the pea plant, screening protocols, omic advances, and future challenges for the development of HS tolerant genotypes.
Collapse
Affiliation(s)
- Jyoti Devi
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Jakhini, Varanasi, India
| | - Vidya Sagar
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Jakhini, Varanasi, India
| | - Gyan P. Mishra
- Indian Council of Agricultural Research-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Prakash Kumar Jha
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
| | - Nakul Gupta
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Jakhini, Varanasi, India
| | - Rakesh K. Dubey
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Jakhini, Varanasi, India
| | - Prabhakar M. Singh
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Jakhini, Varanasi, India
| | - Tusar K. Behera
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Jakhini, Varanasi, India
| | - P. V. Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
2
|
Genomics Associated Interventions for Heat Stress Tolerance in Cool Season Adapted Grain Legumes. Int J Mol Sci 2021; 23:ijms23010399. [PMID: 35008831 PMCID: PMC8745526 DOI: 10.3390/ijms23010399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Cool season grain legumes occupy an important place among the agricultural crops and essentially provide multiple benefits including food supply, nutrition security, soil fertility improvement and revenue for farmers all over the world. However, owing to climate change, the average temperature is steadily rising, which negatively affects crop performance and limits their yield. Terminal heat stress that mainly occurred during grain development phases severely harms grain quality and weight in legumes adapted to the cool season, such as lentils, faba beans, chickpeas, field peas, etc. Although, traditional breeding approaches with advanced screening procedures have been employed to identify heat tolerant legume cultivars. Unfortunately, traditional breeding pipelines alone are no longer enough to meet global demands. Genomics-assisted interventions including new-generation sequencing technologies and genotyping platforms have facilitated the development of high-resolution molecular maps, QTL/gene discovery and marker-assisted introgression, thereby improving the efficiency in legumes breeding to develop stress-resilient varieties. Based on the current scenario, we attempted to review the intervention of genomics to decipher different components of tolerance to heat stress and future possibilities of using newly developed genomics-based interventions in cool season adapted grain legumes.
Collapse
|