1
|
Karonji S, Odhiambo NO, Muli JK, Mugweru J, Mwirichia R. Control of Alternaria Leaf Spot of the Common Bean ( Phaseolus vulgaris L.) Using Soil-Derived Biological Agents. SCIENTIFICA 2024; 2024:3896663. [PMID: 38352045 PMCID: PMC10864046 DOI: 10.1155/2024/3896663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/28/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Phaseolus vulgaris L. is considered one of the most essential legume crops in Kenya. Alternaria alternata is an economically significant plant pathogen that causes Alternaria leaf spot which accounts for over 70% yield losses of beans in Kenya. Chemical fungicides based on copper and sulfur are used to control Alternaria leaf spot in bean plants, but their prolonged use has adversely affected the environment and the health of workers. Herein, we tested the biocontrol potential of bacterial agents from soil planted with Rosecoco bean plants infected with A. alternata. Using bacterial suspensions at different time intervals, we evaluated the putative bacterial biocontrol activity against A. alternata under greenhouse conditions. B. subtilis and B. velezensis bacterial biocontrol agents significantly suppressed disease severity by 20% and 21.2% on the 45th day, respectively. Our study demonstrates that B. subtilis and B. velezensis are promising biocontrol agents that could be integrated in the management of Alternaria leaf spot.
Collapse
Affiliation(s)
- Stella Karonji
- Department of Biological Sciences, University of Embu, P.O. Box 6-60100, Embu, Kenya
| | | | - Joshua Kiilu Muli
- Department of Biological Sciences, University of Embu, P.O. Box 6-60100, Embu, Kenya
| | - Julius Mugweru
- Department of Biological Sciences, University of Embu, P.O. Box 6-60100, Embu, Kenya
| | - Romano Mwirichia
- Department of Biological Sciences, University of Embu, P.O. Box 6-60100, Embu, Kenya
| |
Collapse
|
2
|
Fonseca-Guerra IR, Beltrán Pineda ME, Benavides Rozo ME. Characterization of Alternaria alternata and Alternaria scrophulariae Brown Spot in Colombian quinoa ( Chenopodium quinoa). J Fungi (Basel) 2023; 9:947. [PMID: 37755055 PMCID: PMC10532934 DOI: 10.3390/jof9090947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
Alternaria is a saprophytic and opportunistic fungus with a worldwide distribution that can affect the quality of various agricultural products, such as fruits, cereals, and pseudocereals. This research was carried out to investigate the population of this genus associated with quinoa cultivation in plots located in the Boyacá department (Colombia), the country's third-largest quinoa-producing department. The present study found 17 Alternaria isolates, of which 13 were identified as A. alternata and 4 as A. scrophulariae (formerly A. conjuncta) employed molecular markers of internal transcribed spacer (ITS) region and translation elongation factor 1α (TEF-1α). In the pathogenicity test under greenhouse conditions, all the Alternaria isolates showed some degree of pathogenicity on Piartal quinoa cultivar plants although no significant differences were found in isolates. The severity indices ranged from 2 to 5, and the percentage of affected leaves per plant ranged between 15% and 40%. This fungus affected the foliar tissue of quinoa, resulting in chlorotic and necrotic spots, symptoms that can generate a reduction in the quality and productivity of crops. This is the first time that the pathogenicity of Alternaria spp. in the Piartal variety has been described and the first report of this genera in quinoa crops of Colombia.
Collapse
Affiliation(s)
- Ingrid Rocío Fonseca-Guerra
- Enviromental Management Investigation Group, Universidad de Boyacá, Tunja 150003, Colombia; (M.E.B.P.); (M.E.B.R.)
| | | | | |
Collapse
|
3
|
Wang XA, Gao Y, Jiang W, Wang L, Wang H, Ou X, Yang Y, Wu H, Guo L, Zhou T, Yuan QS. Comparative Analysis of the Expression of Resistance-Related Genes Respond to the Diversity Foliar Pathogens of Pseudostellaria heterophylla. Curr Microbiol 2023; 80:298. [PMID: 37490157 DOI: 10.1007/s00284-023-03410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
The foliar disease, which is the primary complex disease of Pseudostellaria heterophylla, can be caused by multiple co-infecting pathogens, resulting in a significant reduction in yield. However, there is a lack of research on the relationship between co-infection of various pathogens and the response of resistance-related genes in P. heterophylla. Through the use of 18S rDNA sequencing and pathogenicity testing, it has been determined that Fusarium oxysporum, Alternaria alternata, Arcopilus aureus, Botrytis cinerea, Nemania diffusa, Whalleya microplaca, and Cladosporium cladosporioides are co-infecting pathogens responsible for foliar diseases in P. heterophylla. Furthermore, the qRT-PCR analysis revealed that F. oxysporum, A. alternata, B. cinerea, A. aureus, N. diffusa, Schizophyllum commune, C. cladosporioides, and Coprinellus xanthothrix upregulated ten, two, three, four, seven, thirteen, five, one, and six resistance-related genes, respectively. These findings suggest that a total of 22 resistance-related genes were implicated in the response to diverse fungi, and the magnitude and frequency of induction of resistance-related genes varied considerably among the different fungi. The aforementioned gene associated with resistance was found to be implicated in the response to multiple fungi, including PhPRP1, PhBDRN15, PhBDRN11, and PhBDRN3, which were found to be involved in the resistance response to nine, five, four, and four fungi, respectively. The findings indicate that the PhPRP1, PhBDRN15, PhBDRN11, and PhBDRN3 genes exhibit a broad-spectrum resistance to various fungi. Furthermore, the avirulence fungi C. xanthothrix, which is known to affect P. heterophylla, was found to prime a wide range of resistance responses in P. heterophylla, thereby enhancing its disease resistance. This study provided insight into the management strategies for foliar diseases of P. heterophylla and new genetic materials for disease-resistant breeding.
Collapse
Affiliation(s)
- Xiao-Ai Wang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yanping Gao
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Weike Jiang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lu Wang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hui Wang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaohong Ou
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yang Yang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Honglin Wu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China
| | - Tao Zhou
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Qing-Song Yuan
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China.
| |
Collapse
|
4
|
Retraction: Molecular characterization of leaf spot caused by Alternaria alternata on buttonwood (Conocarpus erectus L.) and determination of pathogenicity by a novel disease rating scale. PLoS One 2022; 17:e0272185. [PMID: 35921274 PMCID: PMC9348644 DOI: 10.1371/journal.pone.0272185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
Predicting the impact of environmental factors on citrus canker through multiple regression. PLoS One 2022; 17:e0260746. [PMID: 35381013 PMCID: PMC8982892 DOI: 10.1371/journal.pone.0260746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Climatic conditions play a significant role in the development of citrus canker caused by Xanthomonas citri pv. citri (Xcc). Citrus canker is regarded as one of the major threats being faced by citrus industry in citrus growing countries of the world. Climatic factors exert significant impacts on growth stage, host susceptibility, succulence, vigor, survival, multiplication rate, pathogen dispersion, spore penetration rate, and spore germination. Predicting the impacts of climatic factors on these traits could aid in the development of effective management strategies against the disease. This study predicted the impacts of environmental variables, i.e., temperature, relative humidity, rainfall, and wind speed the development of citrus canker through multiple regression. These environmental variables were correlated with the development of canker on thirty (30) citrus varieties during 2017 to 2020. Significant positive correlations were noted among environment variables and disease development modeled through multiple regression model (Y = +24.02 + 0.5585 X1 + 0.2997 X2 + 0.3534 X3 + 3.590 X4 + 1.639 X5). Goodness of fit of the model was signified by coefficient determination value (97.5%). Results revealed the optimum values of environmental variables, i.e., maximum temperature (37°C), minimum temperature (27°C), relative humidity (55%), rainfall (4.7-7.1 mm) and wind speed (8 Km/h), which were conducive for the development of citrus canker. Current study would help researchers in designing better management strategies against citrus canker disease under changing climatic conditions in the future.
Collapse
|
6
|
Alternaria koreana sp. nov., a new pathogen isolated from leaf spot of ovate-leaf Atractylodes in South Korea. Mol Biol Rep 2021; 49:413-420. [PMID: 34739692 DOI: 10.1007/s11033-021-06887-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND A new species within the genus Alternaria was isolated from the leaf spot of Atractylodes ovata in the Mungyeong and Hwabuk-myeon districts of the Gyeongbuk province of Korea. The leaves showed disease symptoms such as circular or irregular leaf spots and brown to dark brown with gray spots at the center. The leaves also showed that concentric rings were surrounded with yellow halos. METHODS AND RESULTS Phylogenetic analysis was conducted using the sequence dataset of the internal transcribed spacer region and part of the glyceraldehyde-3-phosphate dehydrogenase. The RNA polymerase II second largest subunit, endopolygalacturonase, Alternaria major allergen gene, anonymous gene region, and translation elongation factor 1-alpha genes were used as well. Results showed that present fungal isolates were distinct from other species of the sect. Alternaria. Morphologically, the present isolates also differed from other members of the sect. Alternaria in their production of solitary conidia or conidial chains (two units) and conidial body features. Similarly, it exhibited moderate pathogenicity in the host plant. CONCLUSIONS This study described and illustrated A. koreana as a new species and the causal agent of the leaf-spot disease on A. ovata in Korea.
Collapse
|
7
|
Fahim Abbas M, Batool S, Khaliq S, Mubeen S, Azziz-ud-Din, Ullah N, Zafar K, Rafiq M, Al-Sadi AM, Alotaibi SS, El-Shehawi AM, Li Y, Zuan ATK, Ansari MJ. Diversity of fungal pathogens associated with loquat and development of novel virulence scales. PLoS One 2021; 16:e0257951. [PMID: 34648523 PMCID: PMC8516230 DOI: 10.1371/journal.pone.0257951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Loquat [Eriobotrya japonica (Thunb.) Lindl.] is an important fruit crop in Pakistan; however, a constant decline in its production is noted due biotic and abiotic stresses, particularly disease infestation. Fungal pathogens are the major disease-causing agents; therefore, their identification is necessary for devising management options. This study explored Taxila, Wah-Cantt, Tret, Chatar, Murree, Kalar-Kahar, Choa-Saidan-Shah and Khan-Pur districts in the Punjab and Khyber Paktoon Khawa (KPK) provinces of Pakistan to explore the diversity of fungal pathogens associated with loquat. The samples were collected from these districts and their microscopic characterizations were accomplished for reliable identification. Alternaria alternata, Curvularia lunata, Lasiodiplodia theobromae, Aspergilus flavis, Botrytis cinerea, Chaetomium globosum, Pestalotiopsis mangiferae and Phomopsis sp. were the fungal pathogens infesting loquat in the study area. The isolates of A. alternata and C. lunata were isolated from leaf spots and fruit rot, while the isolates of L. theobromae were associated with twig dieback. The remaining pathogens were allied with fruit rot. The nucleotide evidence of internal transcribed spacer (ITS) regions (ITS1, 5.8S, and ITS2) were computed from all the pathogens and submitted in the database of National Center for Biotechnology Information (NCBI). For multigene analysis, beta-tubulin (BT) gene and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) regions were explored for A. alternata and C. lunata isolates, respectively. The virulence scales of leaf spots, fruit rot, and twig dieback diseases of loquat were developed for the first time through this study. It is the first comprehensive study with morpho-molecular identification, and newly developed virulence scales of the fungal pathogens associated with loquat, which improves the understanding of these destructive diseases.
Collapse
Affiliation(s)
- Muhammad Fahim Abbas
- Department of Plant Pathology, Faculty of Agriculture, Lasbela University of Water Agriculture and Marine Sciences (LUAWMS) Uthal, Balochistan, Pakistan
| | - Sana Batool
- Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sobia Khaliq
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sidra Mubeen
- Department of Chemistry, Kutchery Campus, The Women University Multan, Multan, Pakistan
| | - Azziz-ud-Din
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Naseeb Ullah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Khalida Zafar
- Department of Botany, Islamia College, Peshawar, Pakistan
| | - Muhammad Rafiq
- Department of Plant Pathology, Faculty of Agriculture, University of the Punjab, Lahore, Pakistan
| | - Abdullah M. Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Alkhoud, Oman
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Yunzhou Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University Bareilly, Bareilly, India
| |
Collapse
|
8
|
Mangrove Dieback and Leaf Disease in Sonneratia apetala and Sonneratia caseolaris in Vietnam. FORESTS 2021. [DOI: 10.3390/f12091273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Even though survival rates for mangrove restoration in Vietnam have often been low, there is no information on fungal pathogens associated with mangrove decline in Vietnam. Therefore, this research was undertaken to assess the overall health of mangrove afforestation in Thanh Hoa Province and fungal pathogens associated with tree decline. From a survey of 4800 Sonneratia trees, the incidence of disorders was in the order of pink leaf spot > shoot dieback > black leaf spot for S. caseolaris and black leaf spot > shoot dieback > pink leaf spot for S. apetala. Approximately 12% of S. caseolaris trees had both pink leaf spot and shoot dieback, while only 2% of S. apetala trees had black leaf spot and shoot dieback. Stem and leaf samples were taken from symptomatic trees and fungi were cultured in vitro. From ITS4 and ITS5 analysis, four main fungal genera causing leaf spots and shoot dieback on the two Sonneratia species were identified. The most frequently isolated fungal taxa were Curvularia aff. tsudae (from black leaf spot),Neopestalotiopsis sp.1 (from stem dieback), Pestalotiopsis sp.1 (from pink leaf spot), and Pestalotiopsis sp.4a (from black leaf spot). The pathogenicity of the four isolates was assessed by under-bark inoculation of S. apetala and S. caseolaris seedlings in a nursery in Thai Binh Province. All isolates caused stem lesions, and Neopestalotiopsis sp.1 was the most pathogenic. Thus, investigation of fungal pathogens and their impact on mangrove health should be extended to other afforestation projects in the region, and options for disease management need to be developed for mangrove nurseries.
Collapse
|