1
|
Agarwal V, Abd El E, Danelli SG, Gatta E, Massabò D, Mazzei F, Meier B, Prati P, Vernocchi V, Wang J. Influence of CO 2 and Dust on the Survival of Non-Resistant and Multi-Resistant Airborne E. coli Strains. Antibiotics (Basel) 2024; 13:558. [PMID: 38927224 PMCID: PMC11201083 DOI: 10.3390/antibiotics13060558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The airborne transmission of bacterial pathogens poses a significant challenge to public health, especially with the emergence of antibiotic-resistant strains. This study investigated environmental factors influencing the survival of airborne bacteria, focusing on the effects of different carbon dioxide (CO2) and dust concentrations. The experiments were conducted in an atmospheric simulation chamber using the non-resistant wild-type E. coli K12 (JM109) and a multi-resistant variant (JM109-pEC958). Different CO2 (100 ppm, 800 ppm, 3000 ppm) and dust concentrations (250 µg m-3, 500 µg m-3, 2000 µg m-3) were tested to encompass a wide range of CO2 and dust levels. The results revealed that JM109-pEC958 exhibited greater resilience to high CO2 and dust concentrations compared to its non-resistant counterpart. At 3000 ppm CO2, the survival rate of JM109 was significantly reduced, while the survival rate of JM109-pEC958 remained unaffected. At the dust concentration of 250 µg m-3, JM109 exhibited significantly reduced survival, whereas JM109-pEC958 did not. When the dust concentration was increased to 500 and 2000 µg m-3, even the JM109-pEC958 experienced substantially reduced survival rates, which were still significantly higher than those of its non-resistant counterpart at these concentrations. These findings suggest that multi-resistant E. coli strains possess mechanisms enabling them to endure extreme environmental conditions better than non-resistant strains, potentially involving regulatory genes or efflux pumps. The study underscores the importance of understanding bacterial adaptation strategies to develop effective mitigation approaches against antibiotic-resistant bacteria in atmospheric environments. Overall, this study provides valuable insights into the interplay between environmental stressors and bacterial survival, serving as a foundational step towards elucidating the adaptation mechanisms of multi-resistant bacteria and informing strategies for combating antibiotic resistance in the atmosphere.
Collapse
Affiliation(s)
- Viktoria Agarwal
- Institute of Environmental Engineering, ETH Zurich, 8983 Zurich, Switzerland; (V.A.); (B.M.)
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Elena Abd El
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genoa, Italy; (E.A.E.); (S.G.D.); (E.G.); (D.M.); (F.M.); (P.P.)
- INFN—Sezione di Genova, Via Dodecaneso 33, 16146 Genoa, Italy;
| | - Silvia Giulia Danelli
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genoa, Italy; (E.A.E.); (S.G.D.); (E.G.); (D.M.); (F.M.); (P.P.)
- INFN—Sezione di Genova, Via Dodecaneso 33, 16146 Genoa, Italy;
| | - Elena Gatta
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genoa, Italy; (E.A.E.); (S.G.D.); (E.G.); (D.M.); (F.M.); (P.P.)
| | - Dario Massabò
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genoa, Italy; (E.A.E.); (S.G.D.); (E.G.); (D.M.); (F.M.); (P.P.)
- INFN—Sezione di Genova, Via Dodecaneso 33, 16146 Genoa, Italy;
| | - Federico Mazzei
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genoa, Italy; (E.A.E.); (S.G.D.); (E.G.); (D.M.); (F.M.); (P.P.)
- INFN—Sezione di Genova, Via Dodecaneso 33, 16146 Genoa, Italy;
| | - Benedikt Meier
- Institute of Environmental Engineering, ETH Zurich, 8983 Zurich, Switzerland; (V.A.); (B.M.)
| | - Paolo Prati
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genoa, Italy; (E.A.E.); (S.G.D.); (E.G.); (D.M.); (F.M.); (P.P.)
- INFN—Sezione di Genova, Via Dodecaneso 33, 16146 Genoa, Italy;
| | | | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich, 8983 Zurich, Switzerland; (V.A.); (B.M.)
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
2
|
Lee P, Hou L, Alibhai FJ, Al-attar R, Simón-Chica A, Redondo-Rodríguez A, Nie Y, Mirotsou M, Laflamme MA, Swaminath G, Filgueiras-Rama D. A fully-automated low-cost cardiac monolayer optical mapping robot. Front Cardiovasc Med 2023; 10:1096884. [PMID: 37283579 PMCID: PMC10240081 DOI: 10.3389/fcvm.2023.1096884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/24/2023] [Indexed: 06/08/2023] Open
Abstract
Scalable and high-throughput electrophysiological measurement systems are necessary to accelerate the elucidation of cardiac diseases in drug development. Optical mapping is the primary method of simultaneously measuring several key electrophysiological parameters, such as action potentials, intracellular free calcium and conduction velocity, at high spatiotemporal resolution. This tool has been applied to isolated whole-hearts, whole-hearts in-vivo, tissue-slices and cardiac monolayers/tissue-constructs. Although optical mapping of all of these substrates have contributed to our understanding of ion-channels and fibrillation dynamics, cardiac monolayers/tissue-constructs are scalable macroscopic substrates that are particularly amenable to high-throughput interrogation. Here, we describe and validate a scalable and fully-automated monolayer optical mapping robot that requires no human intervention and with reasonable costs. As a proof-of-principle demonstration, we performed parallelized macroscopic optical mapping of calcium dynamics in the well-established neonatal-rat-ventricular-myocyte monolayer plated on standard 35 mm dishes. Given the advancements in regenerative and personalized medicine, we also performed parallelized macroscopic optical mapping of voltage dynamics in human pluripotent stem cell-derived cardiomyocyte monolayers using a genetically encoded voltage indictor and a commonly-used voltage sensitive dye to demonstrate the versatility of our system.
Collapse
Affiliation(s)
- Peter Lee
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Essel Research and Development Inc., Toronto, ON, Canada
| | - Luqia Hou
- Cardiometabolic Department, Merck & Co., Inc., South San Francisco, CA, United States
| | - Faisal J. Alibhai
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Rasha Al-attar
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Ana Simón-Chica
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Andrés Redondo-Rodríguez
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Yilin Nie
- Cardiometabolic Department, Merck & Co., Inc., South San Francisco, CA, United States
| | - Maria Mirotsou
- Cardiometabolic Department, Merck & Co., Inc., South San Francisco, CA, United States
| | - Michael A. Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gayathri Swaminath
- Cardiometabolic Department, Merck & Co., Inc., South San Francisco, CA, United States
| | - David Filgueiras-Rama
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
3
|
Habibey R. Incubator-independent perfusion system integrated with microfluidic device for continuous electrophysiology and microscopy readouts. Biofabrication 2023; 15. [PMID: 36652708 DOI: 10.1088/1758-5090/acb466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Advances in primary and stem cell derived neuronal cell culture techniques and abundance of available neuronal cell types have enabledin vitroneuroscience as a substantial approach to modelin vivoneuronal networks. Survival of the cultured neurons is inevitably dependent on the cell culture incubators to provide stable temperature and humidity and to supply required CO2levels for controlling the pH of culture medium. Therefore, imaging and electrophysiology recordings outside of the incubator are often limited to the short-term experimental sessions. This restricts our understanding of physiological events to the short snapshots of recorded data while the major part of temporal data is neglected. Multiple custom-made and commercially available platforms like integrated on-stage incubators have been designed to enable long-term microscopy. Nevertheless, long-term high-spatiotemporal electrophysiology recordings from developing neuronal networks needs to be addressed. In the present work an incubator-independent polydimethylsiloxane-based double-wall perfusion chamber was designed and integrated with multi-electrode arrays (MEAs) electrophysiology and compartmentalized microfluidic device to continuously record from engineered neuronal networks at sub-cellular resolution. Cell culture media underwent iterations of conditioning to the ambient CO2and adjusting its pH to physiological ranges to retain a stable pH for weeks outside of the incubator. Double-wall perfusion chamber and an integrated air bubble trapper reduced media evaporation and osmolality drifts of the conditioned media for two weeks. Aligned microchannel-microfluidic device on MEA electrodes allowed neurite growth on top of the planar electrodes and amplified their extracellular activity. This enabled continuous sub-cellular resolution imaging and electrophysiology recordings from developing networks and their growing neurites. The on-chip versatile and self-contained system provides long-term, continuous and high spatiotemporal access to the network data and offers a robustin vitroplatform with many potentials to be applied on advanced cell culture systems including organ-on-chip and organoid models.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany.,CRTD-Center for Regenerative Therapies TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
4
|
Feng Y, Zeng Y, Fu J, Che B, Jing G, Liu Y, Sun D, Zhang C. A Stand-Alone Microfluidic Chip for Long-Term Cell Culture. MICROMACHINES 2023; 14:207. [PMID: 36677268 PMCID: PMC9863834 DOI: 10.3390/mi14010207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Live-cell microscopy is crucial for biomedical studies and clinical tests. The technique is, however, limited to few laboratories due to its high cost and bulky size of the necessary culture equipment. In this study, we propose a portable microfluidic-cell-culture system, which is merely 15 cm×11 cm×9 cm in dimension, powered by a conventional alkali battery and costs less than USD 20. For long-term cell culture, a fresh culture medium exposed to 5% CO2 is programmed to be delivered to the culture chamber at defined time intervals. The 37 °C culture temperature is maintained by timely electrifying the ITO glass slide underneath the culture chamber. Our results demonstrate that 3T3 fibroblasts, HepG2 cells, MB-231 cells and tumor spheroids can be well-maintained for more than 48 h on top of the microscope stage and show physical characters (e.g., morphology and mobility) and growth rate on par with the commercial stage-top incubator and the widely adopted CO2 incubator. The proposed portable cell culture device is, therefore, suitable for simple live-cell studies in the lab and cell experiments in the field when samples cannot be shipped.
Collapse
Affiliation(s)
- Yibo Feng
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi’an 710127, China
| | - Yang Zeng
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi’an 710127, China
| | - Jiahao Fu
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi’an 710127, China
| | - Bingchen Che
- School of Physics, Northwest University, No. 1 Xuefu Avenue, Xi’an 710127, China
| | - Guangyin Jing
- School of Physics, Northwest University, No. 1 Xuefu Avenue, Xi’an 710127, China
| | - Yonggang Liu
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi’an 710127, China
- RongGuangYun Biotechnology Co., Ltd., No. G2018, Building C, Qin Han Innovation Center, Xianyang 712039, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi’an 710127, China
- RongGuangYun Biotechnology Co., Ltd., No. G2018, Building C, Qin Han Innovation Center, Xianyang 712039, China
| |
Collapse
|
5
|
Abstract
Open hardware solutions are increasingly being chosen by researchers as a strategy to improve access to technology for cutting-edge biology research. The use of DIY technology is already widespread, particularly in countries with limited access to science funding, and is catalyzing the development of open-source technologies. Beyond financial accessibility, open hardware can be transformational for the access of laboratories to equipment by reducing dependence on import logistics and enabling direct knowledge transfer. Central drivers to the adoption of appropriate open-source technologies in biology laboratories around the world are open sharing, digital fabrication, local production, the use of standard parts, and detailed documentation. This Essay examines the global spread of open hardware and discusses which kinds of open-source technologies are the most beneficial in scientific environments with economic and infrastructural constraints.
Collapse
Affiliation(s)
- Tobias Wenzel
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Macul, Región Metropolitana, Chile
| |
Collapse
|
6
|
Suslov MA, Sibgatullina GV, Samigullin DV. Simple CO2 Regulator for Laboratory Cell Incubator from Available Components. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|