1
|
Huang WF, Li J, Huang JA, Liu ZH, Xiong LG. Review: Research progress on seasonal succession of phyllosphere microorganisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111898. [PMID: 37879538 DOI: 10.1016/j.plantsci.2023.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/15/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Phyllosphere microorganisms have recently attracted the attention of scientists studying plant microbiomes. The origin, diversity, functions, and interactions of phyllosphere microorganisms have been extensively explored. Many experiments have demonstrated seasonal cycles of phyllosphere microbes. However, a comprehensive comparison of these separate investigations to characterize seasonal trends in phyllosphere microbes of woody and herbaceous plants has not been conducted. In this review, we explored the dynamic changes of phyllosphere microorganisms in woody and non-woody plants with the passage of the season, sought to find the driving factors, summarized these texts, and thought about future research trends regarding the application of phyllosphere microorganisms in agricultural production. Seasonal trends in phyllosphere microorganisms of herbaceous and woody plants have similarities and differences, but extensive experimental validation is needed. Climate, insects, hosts, microbial interactions, and anthropogenic activities are the diverse factors that influence seasonal variation in phyllosphere microorganisms.
Collapse
Affiliation(s)
- Wen-Feng Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Li-Gui Xiong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Brandl MT, Mammel MK, Simko I, Richter TKS, Gebru ST, Leonard SR. Weather factors, soil microbiome, and bacteria-fungi interactions as drivers of the epiphytic phyllosphere communities of romaine lettuce. Food Microbiol 2023; 113:104260. [PMID: 37098420 DOI: 10.1016/j.fm.2023.104260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Lettuce is associated with seasonal outbreaks of Shiga toxin-producing Escherichia coli (STEC) infections. Little is known about how various biotic and abiotic factors affect the lettuce microbiome, which in turn impacts STEC colonization. We characterized the lettuce phyllosphere and surface soil bacterial, fungal, and oomycete communities at harvest in late-spring and -fall in California using metagenomics. Harvest season and field type, but not cultivar, significantly influenced the microbiome composition of leaves and surface soil near plants. Phyllosphere and soil microbiome compositions were correlated with specific weather factors. The relative abundance of Enterobacteriaceae, but not E. coli, was enriched on leaves (5.2%) compared to soil (0.4%) and correlated positively with minimum air temperature and wind speed. Co-occurrence networks revealed seasonal trends in fungi-bacteria interactions on leaves. These associations represented 39%-44% of the correlations between species. All significant E. coli co-occurrences with fungi were positive, while all negative associations were with bacteria. A large proportion of the leaf bacterial species was shared with those in soil, indicating microbiome transmission from the soil surface to the canopy. Our findings provide new insight into factors that shape lettuce microbial communities and the microbial context of foodborne pathogen immigration events in the lettuce phyllosphere.
Collapse
Affiliation(s)
- Maria T Brandl
- Produce Safety and Microbiology Research Unit, US Department of Agriculture, Agricultural Research Service, Albany, CA, USA
| | - Mark K Mammel
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Ivan Simko
- Crop Improvement and Protection Research Unit, US Department of Agriculture, Agricultural Research Service, Salinas, CA, USA
| | - Taylor K S Richter
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Solomon T Gebru
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Susan R Leonard
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA.
| |
Collapse
|
3
|
Culliney P, Schmalenberger A. Cultivation Conditions of Spinach and Rocket Influence Epiphytic Growth of Listeria monocytogenes. Foods 2022; 11:foods11193056. [PMID: 36230132 PMCID: PMC9563967 DOI: 10.3390/foods11193056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Leafy vegetables are associated with Listeriosis outbreaks due to contamination with Listeria monocytogenes. To date, contradictory findings were reported on spinach, rocket, and kale, where some studies reported growth of L. monocytogenes, while others did not. Thus, the current study investigated the reason for conflicting findings by producing leafy vegetables, where cultivation factors were known for growth potential studies. Of all polytunnel produce, kale Nero di Toscana demonstrated the highest growth potential (2.56 log cfu g−1), followed by spinach F1 Cello (1.84 log cfu g−1), rocket Buzz (1.41 log cfu g−1), spinach F1 Trumpet (1.37 log cfu g−1), and finally rocket Esmee (1.23 log cfu g−1). Thus, plant species and variety influenced L. monocytogenes growth potentials. Moreover, significantly lower growth potentials of 0.3 log cfu g−1 were identified when rocket Buzz was cultivated in open fields (1.11 log cfu g−1) instead of a polytunnel. The opposite effect was observed for spinach F1 Trumpet, where growth potentials increased significantly by 0.84 log cfu g−1 when cultivated in open fields (2.21 log cfu g−1). Furthermore, a significant seasonality effect between batches was found (p < 0.05). This study revealed that spinach and rocket cultivation conditions are at least co-factors in the reporting of differing growth potentials of L. monocytogenes across literature and should be considered when conducting future growth potential studies.
Collapse
|