1
|
Carneiro IM, Sá JA, Chiroque-Solano PM, Cardoso FC, Castro GM, Salomon PS, Bastos AC, Moura RL. Precision and accuracy of common coral reef sampling protocols revisited with photogrammetry. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106304. [PMID: 38142582 DOI: 10.1016/j.marenvres.2023.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
The rapid decline of coral reefs calls for cost-effective benthic cover data to improve reef health forecasts, policy building, management responses and evaluation. Reef monitoring has been largely based on divers' observations along transects, and secondarily on quadrat-based protocols, video and photographic records. However, the accuracy and precision of the most common sampling approaches are not yet fully understood. Here, we compared benthic cover estimates from three common sampling protocols: Reef Check (RC), Atlantic and Gulf Rapid Reef Assessment (AGRRA) and photoquadrats (PQ). The reef cover of two contrasting sites was reconstructed with ∼450 m2 orthomosaics built with high resolution Structure-from-Motion (SfM) photogrammetry, which were used as references for comparisons among protocols. In addition, we explored sample size requirements for each protocol and provided cost-effectiveness comparisons. Our results evidenced between-reef differences in the accuracy and precision of estimates with the different protocols. The three protocols performed similarly in the reef with low macroalgal cover (<0.5%), but PQ were more accurate and precise in the reef with relatively high (∼20%) macroalgal cover. The sample size for estimating coral cover with a 20% error margin and a 0.05 significance level was lower for PQ, followed by AGRRA and RC. Considering performance, cost surrogates and equipment needs, cost-effectiveness was higher for PQ. We also discuss costs, limitations and advantages/disadvantages of SfM photogrammetry as a sampling approach for coral reef monitoring.
Collapse
Affiliation(s)
- Ivan M Carneiro
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - João A Sá
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Pamela M Chiroque-Solano
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando C Cardoso
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Guilherme M Castro
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Paulo S Salomon
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alex C Bastos
- Departamento de Oceanografia, Universidade Federal do Espirito Santo, Vitória, ES, Brazil
| | - Rodrigo L Moura
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Studivan MS, Eckert RJ, Shilling E, Soderberg N, Enochs IC, Voss JD. Stony coral tissue loss disease intervention with amoxicillin leads to a reversal of disease-modulated gene expression pathways. Mol Ecol 2023; 32:5394-5413. [PMID: 37646698 DOI: 10.1111/mec.17110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Stony coral tissue loss disease (SCTLD) remains an unprecedented disease outbreak due to its high mortality rate and rapid spread throughout Florida's Coral Reef and wider Caribbean. A collaborative effort is underway to evaluate strategies that mitigate the spread of SCTLD across coral colonies and reefs, including restoration of disease-resistant genotypes, genetic rescue, and disease intervention with therapeutics. We conducted an in-situ experiment in Southeast Florida to assess molecular responses among SCTLD-affected Montastraea cavernosa pre- and post-application of the most widely used intervention method, CoreRx Base 2B with amoxicillin. Through Tag-Seq gene expression profiling of apparently healthy, diseased, and treated corals, we identified modulation of metabolomic and immune gene pathways following antibiotic treatment. In a complementary ex-situ disease challenge experiment, we exposed nursery-cultured M. cavernosa and Orbicella faveolata fragments to SCTLD-affected donor corals to compare transcriptomic profiles among clonal individuals from unexposed controls, those exposed and displaying disease signs, and corals exposed and not displaying disease signs. Suppression of metabolic functional groups and activation of stress gene pathways as a result of SCTLD exposure were apparent in both species. Amoxicillin treatment led to a 'reversal' of the majority of gene pathways implicated in disease response, suggesting potential recovery of corals following antibiotic application. In addition to increasing our understanding of molecular responses to SCTLD, we provide resource managers with transcriptomic evidence that disease intervention with antibiotics appears to be successful and may help to modulate coral immune responses to SCTLD. These results contribute to feasibility assessments of intervention efforts following disease outbreaks and improved predictions of coral reef health across the wider Caribbean.
Collapse
Affiliation(s)
- Michael S Studivan
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
- University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida, USA
- Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
| | - Ryan J Eckert
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Erin Shilling
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Nash Soderberg
- University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida, USA
- Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
| | - Ian C Enochs
- Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
| | - Joshua D Voss
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| |
Collapse
|
3
|
Martínez-Quintana Á, Lasker HR, Wilson AM. Three-dimensional species distribution modelling reveals the realized spatial niche for coral recruitment on contemporary Caribbean reefs. Ecol Lett 2023; 26:1497-1509. [PMID: 37380335 DOI: 10.1111/ele.14281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/06/2023] [Accepted: 05/05/2023] [Indexed: 06/30/2023]
Abstract
The three-dimensional structure of habitats is a critical component of species' niches driving coexistence in species-rich ecosystems. However, its influence on structuring and partitioning recruitment niches has not been widely addressed. We developed a new method to combine species distribution modelling and structure from motion, and characterized three-dimensional recruitment niches of two ecosystem engineers on Caribbean coral reefs, scleractinian corals and gorgonians. Fine-scale roughness was the most important predictor of suitable habitat for both taxa, and their niches largely overlapped, primarily due to scleractinians' broader niche breadth. Crevices and holes at mm scales on calcareous rock with low coral cover were more suitable for octocorals than for scleractinian recruits, suggesting that the decline in scleractinian corals is facilitating the recruitment of octocorals on contemporary Caribbean reefs. However, the relative abundances of the taxa were independent of the amount of suitable habitat on the reef, emphasizing that niche processes alone do not predict recruitment rates.
Collapse
Affiliation(s)
| | - Howard R Lasker
- Department of Environment and Sustainability, University at Buffalo, Buffalo, New York, USA
- Department of Geology, University at Buffalo, Buffalo, New York, USA
| | - Adam M Wilson
- Department of Geography, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
4
|
Huntley N, Brandt ME, Becker CC, Miller CA, Meiling SS, Correa AMS, Holstein DM, Muller EM, Mydlarz LD, Smith TB, Apprill A. Experimental transmission of Stony Coral Tissue Loss Disease results in differential microbial responses within coral mucus and tissue. ISME COMMUNICATIONS 2022; 2:46. [PMID: 37938315 PMCID: PMC9723713 DOI: 10.1038/s43705-022-00126-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 04/28/2023]
Abstract
Stony coral tissue loss disease (SCTLD) is a widespread and deadly disease that affects nearly half of Caribbean coral species. To understand the microbial community response to this disease, we performed a disease transmission experiment on US Virgin Island (USVI) corals, exposing six species of coral with varying susceptibility to SCTLD. The microbial community of the surface mucus and tissue layers were examined separately using a small subunit ribosomal RNA gene-based sequencing approach, and data were analyzed to identify microbial community shifts following disease acquisition, potential causative pathogens, as well as compare microbiota composition to field-based corals from the USVI and Florida outbreaks. While all species displayed similar microbiome composition with disease acquisition, microbiome similarity patterns differed by both species and mucus or tissue microhabitat. Further, disease exposed but not lesioned corals harbored a mucus microbial community similar to those showing disease signs, suggesting that mucus may serve as an early warning detection for the onset of SCTLD. Like other SCTLD studies in Florida, Rhodobacteraceae, Arcobacteraceae, Desulfovibrionaceae, Peptostreptococcaceae, Fusibacter, Marinifilaceae, and Vibrionaceae dominated diseased corals. This study demonstrates the differential response of the mucus and tissue microorganisms to SCTLD and suggests that mucus microorganisms may be diagnostic for early disease exposure.
Collapse
Affiliation(s)
- Naomi Huntley
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, USVI, USA
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Marilyn E Brandt
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, USVI, USA
| | - Cynthia C Becker
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA, USA
| | - Carolyn A Miller
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Sonora S Meiling
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, USVI, USA
| | | | - Daniel M Holstein
- Department of Oceanography and Coastal Science, Louisiana State University, Baton Rouge, LA, USA
| | | | - Laura D Mydlarz
- Department of Biology, University of Texas at Austin, Austin, TX, USA
| | - Tyler B Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, USVI, USA
| | - Amy Apprill
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|