Sauerbeck J, Adam G, Meyer M. Spectral CT in Oncology.
ROFO-FORTSCHR RONTG 2023;
195:21-29. [PMID:
36167316 DOI:
10.1055/a-1902-9949]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND
Spectral CT is gaining increasing clinical importance with multiple potential applications, including oncological imaging. Spectral CT-specific image data offers multiple advantages over conventional CT image data through various post-processing algorithms, which will be highlighted in the following review.
METHODOLOGY
The purpose of this review article is to provide an overview of potential useful oncologic applications of spectral CT and to highlight specific spectral CT pitfalls. The technical background, clinical advantages of primary and follow-up spectral CT exams in oncology, and the application of appropriate spectral tools will be highlighted.
RESULTS/CONCLUSIONS
Spectral CT imaging offers multiple advantages over conventional CT imaging, particularly in the field of oncology. The combination of virtual native and low monoenergetic images leads to improved detection and characterization of oncologic lesions. Iodine-map images may provide a potential imaging biomarker for assessing treatment response.
KEY POINTS
· The most important spectral CT reconstructions for oncology imaging are virtual unenhanced, iodine map, and virtual monochromatic reconstructions.. · The combination of virtual unenhanced and low monoenergetic reconstructions leads to better detection and characterization of the vascularization of solid tumors.. · Iodine maps can be a surrogate parameter for tumor perfusion and potentially used as a therapy monitoring parameter.. · For radiotherapy planning, the relative electron density and the effective atomic number of a tissue can be calculated..
CITATION FORMAT
· Sauerbeck J, Adam G, Meyer M. Onkologische Bildgebung mittels Spektral-CT. Fortschr Röntgenstr 2023; 195: 21 - 29.
Collapse