1
|
Yalley AK, Ocran J, Cobbinah JE, Obodai E, Yankson IK, Kafintu-Kwashie AA, Amegatcher G, Anim-Baidoo I, Nii-Trebi NI, Prah DA. Advances in Malaria Diagnostic Methods in Resource-Limited Settings: A Systematic Review. Trop Med Infect Dis 2024; 9:190. [PMID: 39330879 PMCID: PMC11435979 DOI: 10.3390/tropicalmed9090190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Malaria continues to pose a health challenge globally, and its elimination has remained a major topic of public health discussions. A key factor in eliminating malaria is the early and accurate detection of the parasite, especially in asymptomatic individuals, and so the importance of enhanced diagnostic methods cannot be overemphasized. This paper reviewed the advances in malaria diagnostic tools and detection methods over recent years. The use of these advanced diagnostics in lower and lower-middle-income countries as compared to advanced economies has been highlighted. Scientific databases such as Google Scholar, PUBMED, and Multidisciplinary Digital Publishing Institute (MDPI), among others, were reviewed. The findings suggest important advancements in malaria detection, ranging from the use of rapid diagnostic tests (RDTs) and molecular-based technologies to advanced non-invasive detection methods and computerized technologies. Molecular tests, RDTs, and computerized tests were also seen to be in use in resource-limited settings. In all, only twenty-one out of a total of eighty (26%) low and lower-middle-income countries showed evidence of the use of modern malaria diagnostic methods. It is imperative for governments and other agencies to direct efforts toward malaria research to upscale progress towards malaria elimination globally, especially in endemic regions, which usually happen to be resource-limited regions.
Collapse
Affiliation(s)
- Akua K. Yalley
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Joyous Ocran
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana; (J.O.); (J.E.C.)
| | - Jacob E. Cobbinah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana; (J.O.); (J.E.C.)
| | - Evangeline Obodai
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana;
| | - Isaac K. Yankson
- CSIR-Building and Road Research Institute, Kumasi P.O. Box UP40, Kumasi, Ghana;
| | - Anna A. Kafintu-Kwashie
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Gloria Amegatcher
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Isaac Anim-Baidoo
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Nicholas I. Nii-Trebi
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Diana A. Prah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
- Department of Science Laboratory Technology, Faculty of Applied Sciences, Accra Technical University, Barnes Road, Accra P.O. Box GP 561, Ghana
| |
Collapse
|
2
|
Gupta H, Sharma S, Gilyazova I, Satyamoorthy K. Molecular tools are crucial for malaria elimination. Mol Biol Rep 2024; 51:555. [PMID: 38642192 DOI: 10.1007/s11033-024-09496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
The eradication of Plasmodium parasites, responsible for malaria, is a daunting global public health task. It requires a comprehensive approach that addresses symptomatic, asymptomatic, and submicroscopic cases. Overcoming this challenge relies on harnessing the power of molecular diagnostic tools, as traditional methods like microscopy and rapid diagnostic tests fall short in detecting low parasitaemia, contributing to the persistence of malaria transmission. By precisely identifying patients of all types and effectively characterizing malaria parasites, molecular tools may emerge as indispensable allies in the pursuit of malaria elimination. Furthermore, molecular tools can also provide valuable insights into parasite diversity, drug resistance patterns, and transmission dynamics, aiding in the implementation of targeted interventions and surveillance strategies. In this review, we explore the significance of molecular tools in the pursuit of malaria elimination, shedding light on their key contributions and potential impact on public health.
Collapse
Affiliation(s)
- Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Sonal Sharma
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Irina Gilyazova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, Ufa, 450054, Russia
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Kapaettu Satyamoorthy
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, 580009, Karnataka, India
| |
Collapse
|
3
|
Horak P, Auer H, Wiedermann U, Walochnik J. Malaria in Austria : A retrospective analysis of malaria cases diagnosed at a reference center in 2010-2020. Wien Klin Wochenschr 2023; 135:617-624. [PMID: 37069405 PMCID: PMC10108813 DOI: 10.1007/s00508-023-02179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/25/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Although malaria is not endemic to Austria, each year infections are imported by travellers, migrants and refugees. This study aims to provide an overview of malaria cases diagnosed at an Austrian institute for tropical medicine between 2010 and 2020. METHODS A retrospective, descriptive study was conducted based on the data of malaria cases confirmed at the Institute of Specific Prophylaxis and Tropical Medicine of the Medical University of Vienna. Laboratory diagnostics included microscopy, polymerase chain reaction (PCR) and real-time quantitative PCR. RESULTS Overall, 122 cases were identified. Annual case numbers were consistently higher from 2016 to 2020 than during the first half of the decade. Most malaria cases were diagnosed during summer and early autumn. This seasonal trend was not observed during the year 2020. With 55.1% (65/118) Plasmodium falciparum was the most common species, followed by Plasmodium vivax (19.5%, 23/118). The majority of patients were male (71.1%, 86/121) and the median age was 34.5 years (interquartile range, IQR 22.5-47.0 years). With a median age of 20.0 years (IQR 14.0-32.0 years), patients with P. vivax infections were younger than those infected with other Plasmodium species. Moreover, they were mostly male (82.6%, 19/23). CONCLUSION From 2010 to 2020, the number of malaria cases diagnosed at the center increased. Growing international mobility and changing travel behavior could at least partly be responsible for this trend and there are indications that particularly P. vivax infections were imported by migrants and refugees.
Collapse
Affiliation(s)
- Paul Horak
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Herbert Auer
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Verma AK, Noumani A, Yadav AK, Solanki PR. FRET Based Biosensor: Principle Applications Recent Advances and Challenges. Diagnostics (Basel) 2023; 13:diagnostics13081375. [PMID: 37189476 DOI: 10.3390/diagnostics13081375] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023] Open
Abstract
Förster resonance energy transfer (FRET)-based biosensors are being fabricated for specific detection of biomolecules or changes in the microenvironment. FRET is a non-radiative transfer of energy from an excited donor fluorophore molecule to a nearby acceptor fluorophore molecule. In a FRET-based biosensor, the donor and acceptor molecules are typically fluorescent proteins or fluorescent nanomaterials such as quantum dots (QDs) or small molecules that are engineered to be in close proximity to each other. When the biomolecule of interest is present, it can cause a change in the distance between the donor and acceptor, leading to a change in the efficiency of FRET and a corresponding change in the fluorescence intensity of the acceptor. This change in fluorescence can be used to detect and quantify the biomolecule of interest. FRET-based biosensors have a wide range of applications, including in the fields of biochemistry, cell biology, and drug discovery. This review article provides a substantial approach on the FRET-based biosensor, principle, applications such as point-of-need diagnosis, wearable, single molecular FRET (smFRET), hard water, ions, pH, tissue-based sensors, immunosensors, and aptasensor. Recent advances such as artificial intelligence (AI) and Internet of Things (IoT) are used for this type of sensor and challenges.
Collapse
Affiliation(s)
- Awadhesh Kumar Verma
- Lab D NanoBiolab, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashab Noumani
- Lab D NanoBiolab, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amit K Yadav
- Lab D NanoBiolab, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pratima R Solanki
- Lab D NanoBiolab, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
5
|
Advanced Molecular-Genetic Methods and Prospects for Their Application for the Indication and Identification of <i>Yersinia pestis</i> Strains. PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2023. [DOI: 10.21055/0370-1069-2022-4-29-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The review provides an analysis of the literature data on the use of various modern molecular-genetic methods for the indication and identification of Yersinia pestis strains with different properties and degree of virulence, which is caused by the diverse natural conditions in which they circulate. The methods are also considered from the perspective of their promising application at three levels (territorial, regional and federal) of the system for laboratory diagnosis of infectious diseases at the premises of Rospotrebnadzor organizations to solve the problem of maintaining the sanitary and epidemiological well-being of the country’s population. The main groups of methods considered are as follows: based on the analysis of the lengths of restriction fragments (ribo- and IS-typing, pulse gel electrophoresis); based on the analysis of specific fragments (DFR typing, VNTR typing); based on sequencing (MLST, CRISPR analysis, SNP analysis); PCR methods (including IPCR, SPA); isothermal amplification methods (LAMP, HDA, RPA, SEA, PCA, SHERLOCK); DNA-microarray; methods using aptamer technology; bio- and nano-sensors; DNA origami; methods based on neural networks. We can conclude that the rapid development of molecular diagnostics and genetics is aimed at increasing efficiency, multi-factorial approaches and simplifying the application of techniques with no need for expensive equipment and highly qualified personnel for analysis. At all levels of the system for laboratory diagnosis of infectious diseases at the Rospotrebnadzor organizations, it is possible to use methods based on PCR, isothermal amplification, SHERLOCK, biosensors, and small-sized sequencing devices. At the territorial level, at plague control stations, the use of immuno-PCR and SPA for the indication of Y. pestis is viable. At the regional level, introduction of the technologies based on the use of aptamers and DNA chips looks promising. For the federal level, the use of DNA origami methods and new technologies of whole genome sequencing is a prospect within the framework of advanced identification, molecular typing and sequencing of the genomes of plague agent strains.
Collapse
|
6
|
Assessing the diagnostic performance of a novel RT-PCR fluorescence method for the detection of human plasmodium species. PLoS One 2022; 17:e0272094. [PMID: 35925877 PMCID: PMC9352105 DOI: 10.1371/journal.pone.0272094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
Background Malaria elimination effort is hampered not only by the lack of effective medication but also due to the lack of sensitive diagnostic tools to detect infections with low levels of parasitemia. Therefore, more sensitive and specific high-throughput molecular diagnostic approaches are needed for accurate malaria diagnosis. Methods In the present study, the performance of a novel single-tube MC004 real-time polymerase chain reaction (PCR) assay (MRC-Holland, Amsterdam, the Netherlands) was assessed for the detection of infection and discrimination of Plasmodium species. Blood samples (n = 150) were collected from malaria suspected patients at Adama malaria diagnosis and treatment centre, Adama, central Ethiopia. The positive predictive value (PPV), negative predictive value (NPV), analytical sensitivity and specificity of the assay were assessed against the conventional microscopic method. Results Plasmodium species were detected in 59 (39.3%) of the samples by microscopy and in 62 (41.3%) by the novel MC004 RT-PCR. Plasmodium vivax, Plasmodium falciparum and mixed infections with Plasmodium falciparum & Plasmodium vivax accounted for 47.5%, 40.6% and 11.9% respectively as detected by microscopy. The MC004 RT-PCR assay identified 59.7% and 40.3% of the samples positive for Plasmodium vivax and Plasmodium falciparum respectively. The sensitivity, specificity, PPV, and NPV of the MC004 RT-PCR assay were 95.8%, 97.8%, 92%, and 98.9%, respectively. No mixed infections were detected using the MC004 assay. Conclusion The MC004 RT-PCR assay is a useful tool for the early detection of malaria and identification of Plasmodium species with a high degree of sensitivity and specificity. Due to its high sensitivity, and simplicity (being a single-tube assay), the MC004 is suitable for use in clinical settings and epidemiological studies.
Collapse
|
7
|
Lin H, Zhao S, Liu Y, Shao L, Ye Y, Jiang N, Yang K. Rapid Visual Detection of Plasmodium Using Recombinase-Aided Amplification With Lateral Flow Dipstick Assay. Front Cell Infect Microbiol 2022; 12:922146. [PMID: 35811679 PMCID: PMC9263184 DOI: 10.3389/fcimb.2022.922146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background Malaria is a global public health problem. China has had no case of indigenous malaria since 2016. However, imported cases of malaria remain an issue among travelers, overseas workers, and foreign traders. Although these cases are always asymptomatic, if they donate blood, there is a great risk of transfusion transmitted-malaria (TTM). Therefore, blood banks need a rapid screening tool to detect Plasmodium species. Methods We designed an assay using recombinase-aided amplification (RAA) and a lateral-flow dipstick (LFD) (RAA-LFD) to detect the 18S ribosomal RNA gene of Plasmodium species. Sensitivity was evaluated using a recombinant plasmid and Plasmodium genomic DNA. Specificity was evaluated using DNA extracted from the blood of patients with malaria or other infectious parasites. For clinical assessment, blood samples from patients with malaria and blood donors were evaluated. Results The RAA-LFD assay was performed in an incubator block at 37°C for 15 min, and the amplicons were visible to the naked eye on the flow dipsticks within 3 min. The sensitivity was 1 copy/μL of recombinant plasmid. For genomic DNA from whole blood of malaria patients infected with P. falciparum, P. vivax, P. ovale, and P. malariae, the sensitivity was 0.1 pg/μL, 10 pg/μL, 10-100 pg/μL, and 100pg/μL, respectively. The sensitivity of this assay was 100pg/μL. No cross-reaction with other transfusion-transmissible parasites was detected. Conclusions The results demonstrated that this RAA-LFD assay was suitable for reliable field detection of Plasmodium species in low-resource settings with limited laboratory capabilities.
Collapse
Affiliation(s)
- Hong Lin
- Jiangsu Province Blood Center, Nanjing, China
- *Correspondence: Hong Lin, ; Kun Yang,
| | - Song Zhao
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yanhong Liu
- Jiangsu Qitian Gene Technology Co., Ltd., Wuxi, China
| | - Lei Shao
- Jiangsu Province Blood Center, Nanjing, China
| | - Yuying Ye
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | | | - Kun Yang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- *Correspondence: Hong Lin, ; Kun Yang,
| |
Collapse
|
8
|
Schneider R, Lamien-Meda A, Auer H, Wiedermann-Schmidt U, Chiodini PL, Walochnik J. A Rapid FRET Real-Time PCR Protocol for Simultaneous Quantitative Detection and Discrimination of Human Plasmodium Parasites. Bio Protoc 2022; 12:e4381. [PMID: 35530518 PMCID: PMC9018429 DOI: 10.21769/bioprotoc.4381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 12/29/2022] Open
Abstract
Malaria is the most important parasitic disease worldwide, and accurate diagnosis and treatment without delay are essential for reducing morbidity and mortality, especially in P. falciparum malaria. Real-time PCR is highly sensitive and highly specific, therefore an excellent diagnostic tool for laboratory detection and species-specific diagnosis of malaria, especially in non-endemic regions where experience in microscopic malaria diagnostics is limited. In contrast to many other real-time PCR protocols, our new fluorescence resonance energy transfer-based real-time PCR (FRET-qPCR) allows the quantitative and species-specific detection of all human Plasmodium spp. in one run. Species identification is based on single nucleotide polymorphisms (SNPs) within the MalFL probe, detectable by melting curve analysis. A significant advantage of our FRET-qPCR is the short turn-around time of less than two hours, including DNA extraction, which qualifies it for routine diagnostics. Rapid and reliable species-specific malaria diagnosis is important, because treatment is species-dependent. Apart from first-line diagnosis, the quantitative results of our new FRET-qPCR can be helpful in therapy control, to detect early treatment failure. Graphic abstract.
Collapse
Affiliation(s)
- Renate Schneider
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Aline Lamien-Meda
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Herbert Auer
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Ursula Wiedermann-Schmidt
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | | | - Julia Walochnik
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
,
*For correspondence:
| |
Collapse
|