1
|
Karabay AZ, Ozkan T, Karadag Gurel A, Koc A, Hekmatshoar Y, Sunguroglu A, Aktan F, Buyukbingöl Z. Identification of exosomal microRNAs and related hub genes associated with imatinib resistance in chronic myeloid leukemia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9701-9721. [PMID: 38916832 PMCID: PMC11582232 DOI: 10.1007/s00210-024-03198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024]
Abstract
Chemotherapy resistance is a major obstacle in cancer therapy, and identifying novel druggable targets to reverse this phenomenon is essential. The exosome-mediated transmittance of drug resistance has been shown in various cancer models including ovarian and prostate cancer models. In this study, we aimed to investigate the role of exosomal miRNA transfer in chronic myeloid leukemia drug resistance. For this purpose, firstly exosomes were isolated from imatinib sensitive (K562S) and resistant (K562R) chronic myeloid leukemia (CML) cells and named as Sexo and Rexo, respectively. Then, miRNA microarray was used to compare miRNA profiles of K562S, K562R, Sexo, Rexo, and Rexo-treated K562S cells. According to our results, miR-125b-5p and miR-99a-5p exhibited increased expression in resistant cells, their exosomes, and Rexo-treated sensitive cells compared to their sensitive counterparts. On the other hand, miR-210-3p and miR-193b-3p were determined to be the two miRNAs which exhibited decreased expression profile in resistant cells and their exosomes compared to their sensitive counterparts. Gene targets, signaling pathways, and enrichment analysis were performed for these miRNAs by TargetScan, KEGG, and DAVID. Potential interactions between gene candidates at the protein level were analyzed via STRING and Cytoscape software. Our findings revealed CCR5, GRK2, EDN1, ARRB1, P2RY2, LAMC2, PAK3, PAK4, and GIT2 as novel gene targets that may play roles in exosomal imatinib resistance transfer as well as mTOR, STAT3, MCL1, LAMC1, and KRAS which are already linked to imatinib resistance. MDR1 mRNA exhibited higher expression in Rexo compared to Sexo as well as in K562S cells treated with Rexo compared to K562S cells which may suggest exosomal transfer of MDR1 mRNA.
Collapse
Affiliation(s)
- Arzu Zeynep Karabay
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Tulin Ozkan
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey.
| | - Aynur Karadag Gurel
- Department of Medical Biology, Faculty of Medicine, Usak University, Usak, Turkey.
| | - Asli Koc
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Yalda Hekmatshoar
- Department of Medical Biology, Faculty of Medicine, Altinbas University, Istanbul, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Fugen Aktan
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zeliha Buyukbingöl
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Xia J, Peng Z, Zhang M, Liao Q, Liu C, Deng X. MicroRNA-429 overexpression overcomes imatinib resistance of glioma cells by negatively regulating lysophosphatidic acid receptor 1. Neurol Res 2024; 46:1149-1159. [PMID: 39531542 DOI: 10.1080/01616412.2024.2423586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Glioma is one of the most aggressive and lethal malignancies in central nervous system. It has been reported that miR-429 is declined in glioma and functions as a tumor suppressor. Nonetheless, the potential role of miR-429 in drug resistance of glioma is still ambiguous. METHODS Stable imatinib-resistant lines U251-AR and T98G-AR were established using glioma cell lines U251 and T98G. Cell apoptosis and cycle were analyzed by flow cytometry, and CCK-8 assay was utilized to measure cell viability. Protein and RNA levels were tested with western blot and RT-qPCR. The predicted binding site was confirmed by dual luciferase reporter assay. RESULTS Imatinib-resistant U251-AR and T98G-AR cells presented lower level of miR-429 and higher level of LPAR1. MiR-429 overexpression obviously promoted imatinib sensitivity in glioma cells, indicated by the reduced IC50 value, facilitated cell apoptosis and cell cycle arrest at G0/G1 phase, and downregulated multidrug resistance-related proteins. LPAR1 was verified as a direct target of miR-429 and its expression was negatively regulated by miR-429. Additionally, overexpression of LPAR1 restrained the biological function of miR-429 on imatinib chemoresistance. CONCLUSION MiR-429 partly sensitized glioma cells to imatinib via downregulation LPAR1, which might provide an approach to overcome imatinib chemoresistance during glioma treatment.
Collapse
Affiliation(s)
- Jieyao Xia
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| | - Zhengyang Peng
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| | - Meina Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| | - Qiongqiong Liao
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| | - Chubao Liu
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| | - Xiong Deng
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| |
Collapse
|
3
|
Shen Z, Yu N, Zhang Y, Jia M, Sun Y, Li Y, Zhao L. The potential roles of HIF-1α in epithelial-mesenchymal transition and ferroptosis in tumor cells. Cell Signal 2024; 122:111345. [PMID: 39134249 DOI: 10.1016/j.cellsig.2024.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
In tumors, the rapid proliferation of cells and the imperfect blood supply system lead to hypoxia, which can regulate the adaptation of tumor cells to the hypoxic environment through hypoxia-inducible factor-1α (HIF-1α) and promote tumor development in multiple ways. Recent studies have found that epithelial-mesenchymal transition (EMT) and ferroptosis play important roles in the progression of tumor cells. The activation of HIF-1α is considered a key factor in inducing EMT in tumor cells. When HIF-1α is activated, it can regulate EMT-related genes, causing tumor cells to gradually lose their epithelial characteristics and acquire more invasive mesenchymal traits. The occurrence of EMT allows tumor cells to better adapt to changes in the surrounding tissue, enhancing their migratory and invasive capabilities, thus promoting tumor progression. At the same time, HIF-1α also plays a crucial regulatory role in ferroptosis in tumor cells. In a hypoxic environment, HIF-1α may affect processes such as iron metabolism and oxidative stress responses, inducing ferroptosis in tumor cells. This article briefly reviews the dual role of HIF-1α in EMT and ferroptosis in tumor cells, helping to gain a deeper understanding of the regulatory pathways of HIF-1α in the development of tumor cells, providing a new perspective for understanding the pathogenesis of tumors. The regulation of HIF-1α may become an important strategy for future tumor therapy.
Collapse
Affiliation(s)
- Zhongjun Shen
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Na Yu
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yanfeng Zhang
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Mingbo Jia
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Ying Sun
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yao Li
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Liyan Zhao
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China.
| |
Collapse
|
4
|
Huo C, Kuo Y, Lin C, Shiah S, Li C, Huang S, Chen J, Wang W, Kung H, Chuu C. The miRNAs 203a/210-3p/5001-5p regulate the androgen/androgen receptor/YAP-induced migration in prostate cancer cells. Cancer Med 2024; 13:e70106. [PMID: 39149855 PMCID: PMC11327718 DOI: 10.1002/cam4.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/07/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) patients with elevated level of androgen receptor (AR) correlate with higher metastatic incidence. Protein expression of AR and its target gene prostate-specific antigen (PSA) are elevated in metastatic prostate tumors as compared to organ-confined tumors. Androgen treatment or elevation of AR promotes metastasis of PCa in cell culture and murine model. However, under androgen depleted condition, AR suppressed cell mobility and invasiveness of PCa cells. Androgen deprivation therapy in PCa patients is associated with higher risk of cancer metastasis. We therefore investigated the dual roles of AR and miRNAs on PCa metastasis. METHODS The PC-3AR (PC-3 cells re-expressing AR) and LNCaP cells were used as PCa cell model. Transwell migration and invasion assay, wound-healing assay, zebrafish xenotransplantation assay, and zebrafish vascular exit assay were used to investigate the role of AR and androgen on PCa metastasis. Micro-Western Array, co-immunoprecipitation and Immunofluorescence were applied to dissect the molecular mechanism lying underneath. The miRNA array, miRNA inhibitors or plasmid, and chromatin immunoprecipitation assay were used to study the role of miRNAs on PCa metastasis. RESULTS In the absence of androgen, AR repressed the migration and invasion of PCa cells. When androgen was present, AR stimulated the migration and invasion of PCa cells both in vitro and in zebrafish xenotransplantation model. Androgen increased phospho-AR Ser81 and yes-associated protein 1 (YAP), decreased phospho-YAP Ser217, and altered epithelial-mesenchymal transition (EMT) proteins in PCa cells. Co-IP assay demonstrated that androgen augmented the interaction between YAP and AR in nucleus. Knockdown of YAP or treatment with YAP inhibitor abolished the androgen-induced migration and invasion of PCa cells, while overexpression of YAP showed opposite effects. The miRNA array revealed that androgen decreased hsa-miR-5001-5p but increased hsa-miR-203a and hsa-miR-210-3p in PC-3AR cells but not PC-3 cells. Treatment with inhibitors targeting hsa-miR-203a/hsa-miR-210-3p, or overexpression of hsa-miR-5001-5p decreased YAP expression as well as suppressed the androgen-induced migration and invasion of PCa cells. Chromatin immunoprecipitation (ChIP) assay demonstrated that AR binds with promoter region of has-miR-210-3p in the presence of androgen. CONCLUSIONS Our observations indicated that miRNAs 203a/210-3p/5001-5p regulate the androgen/AR/YAP-induced PCa metastasis.
Collapse
Affiliation(s)
- Chieh Huo
- Institute of Cellular and System MedicineNational Health Research InstitutesZhunanTaiwan
| | - Ying‐Yu Kuo
- Institute of Cellular and System MedicineNational Health Research InstitutesZhunanTaiwan
| | - Ching‐Yu Lin
- Institute of Cellular and System MedicineNational Health Research InstitutesZhunanTaiwan
- Ph.D. Program for Cancer Molecular Biology and Drug DiscoveryTaipei Medical UniversityTaipeiTaiwan
| | - Shine‐Gwo Shiah
- National Institute of Cancer ResearchNational Health Research InstitutesZhunanTaiwan
| | - Chia‐Yang Li
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Shu‐Pin Huang
- Department of Urology, School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Jen‐Kun Chen
- Institute of Biomedical Engineering and NanomedicineNational Health Research InstitutesZhunanTaiwan
| | - Wen‐Ching Wang
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Hsing‐Jien Kung
- Ph.D. Program for Cancer Molecular Biology and Drug DiscoveryTaipei Medical UniversityTaipeiTaiwan
| | - Chih‐Pin Chuu
- Institute of Cellular and System MedicineNational Health Research InstitutesZhunanTaiwan
- Ph.D. Program for AgingChina Medical UniversityTaichungTaiwan
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
- Department of Life SciencesNational Central UniversityTaoyuanTaiwan
| |
Collapse
|
5
|
Kumar S, Yadav V, Sharma N, Sethi A. HypoxamiR-210-3p regulates mesenchymal stem cells proliferation via P53 & Akt. Mol Cell Biochem 2024; 479:2119-2129. [PMID: 37620743 DOI: 10.1007/s11010-023-04834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Transplanted stem cells (˃95%) into ischemic myocardium die because of unfavourable conditions. Moreover, hypoxia role in the cell cycle regulation has been studied in transformed/immortalized cell lines which may have altered cell cycle regulators and/or mutated and, can't be transplanted in patients. We quest to find out the mechanism of cell cycle regulation in mesenchymal stem cells (MSC) to regulate its survival and proliferation in repair processes. Additionally, critically analysed role of hypoxamiR-210-3p, and cell cycle regulators that can regulate cell proliferation under hypoxic conditions. Bone marrow-derived MSC (BM-MSC) isolated from young male Fischer-344 rats by flushing the cavity of femur and propagated in vitro under 1% hypoxia for 72 h showed an increased in cell proliferation ( > 30%, p < 0.05) compared to normoxia. miR-210-3p, role in cell proliferation under hypoxic condition was confirmed by knockdown. Loss of function studies with transfection of anti-mir-210-3p, we observed decrease in proliferation of BM-MSC under hypoxia. Furthermore, BM-MSC proliferation due to miR-210-3p was confirmed using CFSE assay and flow cytometry, in which more cells were observed in S-phase. Mechanistically, western blot analysis showed miR-210-3p inhibition upregulates p53 and p21 expression and subsequent decrease in pAkt under hypoxia. On contrary, CFSE and Western blot under normoxic conditions showed downregulation of p53 and p21 whilst upregulation of pAkt indicated the key role of miR-210-3p in BM-MSC proliferation. Our results demonstrate the role of miR-210-3p in BM-MSC proliferation under both hypoxic and normoxic conditions and illustrate the potential mechanism via the regulation of pAkt, p53 and p21.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Biochemistry, Medical College, All India Institute of Medical Sciences, Bathinda, India.
- Division of Regenerative Medicine, Department of Pathology and Laboratory Medicine, Center of Excellence (CoE) Cardiovascular Diseases, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45229, USA.
- Department of Biochemistry, Medical College, All India Institute of Medical Sciences, Bathinda, Punjab, 151001, India.
| | - Varsha Yadav
- Department of Biochemistry, Medical College, All India Institute of Medical Sciences, Bathinda, India
| | - Namrta Sharma
- Department of Biochemistry, Medical College, All India Institute of Medical Sciences, Bathinda, India
| | - Anshika Sethi
- Department of Biochemistry, Medical College, All India Institute of Medical Sciences, Bathinda, India
| |
Collapse
|
6
|
Peppicelli S, Calorini L, Bianchini F, Papucci L, Magnelli L, Andreucci E. Acidity and hypoxia of tumor microenvironment, a positive interplay in extracellular vesicle release by tumor cells. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00969-z. [PMID: 39023664 DOI: 10.1007/s13402-024-00969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
The complex and continuously evolving features of the tumor microenvironment, varying between tumor histotypes, are characterized by the presence of host cells and tumor cells embedded in a milieu shaped by hypoxia and low pH, resulting from the frequent imbalance between vascularity and tumor cell proliferation. These microenvironmental metabolic stressors play a crucial role in remodeling host cells and tumor cells, contributing to the stimulation of cancer cell heterogeneity, clonal evolution, and multidrug resistance, ultimately leading to progression and metastasis. The extracellular vesicles (EVs), membrane-enclosed structures released into the extracellular milieu by tumor/host cells, are now recognized as critical drivers in the complex intercellular communication between tumor cells and the local cellular components in a hypoxic/acidic microenvironment. Understanding the intricate molecular mechanisms governing the interactions between tumor and host cells within a hypoxic and acidic microenvironment, triggered by the release of EVs, could pave the way for innovative strategies to disrupt the complex interplay of cancer cells with their microenvironment. This approach may contribute to the development of an efficient and safe therapeutic strategy to combat cancer progression. Therefore, we review the major findings on the release of EVs in a hypoxic/acidic tumor microenvironment to appreciate their role in tumor progression toward metastatic disease.
Collapse
Affiliation(s)
- Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy.
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| |
Collapse
|
7
|
Valencia-Cervantes J, Sierra-Vargas MP. Regulation of Cancer-Associated miRNAs Expression under Hypoxic Conditions. Anal Cell Pathol (Amst) 2024; 2024:5523283. [PMID: 38766303 PMCID: PMC11101257 DOI: 10.1155/2024/5523283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/22/2024] Open
Abstract
Solid tumors frequently experience hypoxia or low O2 levels. In these conditions, hypoxia-inducible factor 1 alpha (HIF-1α) is activated and acts as a transcription factor that regulates cancer cell adaptation to O2 and nutrient deprivation. HIF-1α controls gene expression associated with various signaling pathways that promote cancer cell proliferation and survival. MicroRNAs (miRNAs) are 22-nucleotide noncoding RNAs that play a role in various biological processes essential for cancer progression. This review presents an overview of how hypoxia regulates the expression of multiple miRNAs in the progression of cancer cells.
Collapse
Affiliation(s)
- Jesús Valencia-Cervantes
- Departamento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Estancias Posdoctorales por México 2022 (1), Consejo Nacional de Humanidades, Ciencias y Tecnologías CONAHCYT, Mexico City 03940, Mexico
| | - Martha Patricia Sierra-Vargas
- Departamento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Subdirección de Investigación Clínica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
8
|
Zhang XB, Song Y, Lai YT, Qiu SZ, Hu AK, Li DX, Zheng NS, Zeng HQ, Lin QC. MiR-210-3p enhances intermittent hypoxia-induced tumor progression via inhibition of E2F3. Sleep Breath 2024; 28:607-617. [PMID: 37775619 DOI: 10.1007/s11325-023-02925-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
PURPOSE Intermittent hypoxia (IH) is a hallmark of obstructive sleep apnea (OSA), which is related to tumorigenesis and progression. Although micro-ribonucleic acid-210-3p (miR-210-3p) is correlated with hypoxia-induced tumor development, its role in the relationship between IH and tumor function remains poorly understood. The present work focused on elucidating the molecular mechanism through which miR-210-3p drives tumor progression under IH. METHODS MiR-210-3p levels were quantified within tumor samples from patients with lung adenocarcinoma who had or did not have OSA. Correlations between miR-210-3p and polysomnographic variables were analyzed. For in vitro experiments, miR-210-3p was inhibited or overexpressed via transfection under IH conditions. Cell viability, growth, invasion and migration assays were carried out. For in vivo modeling of IH using mouse xenografts, a miR-210-3p antagomir was intratumorally injected, tumor biological behaviors were evaluated, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunohistochemistry and western blot were carried out for detecting miR-210-3p and E2F transcription factor 3 (E2F3) expression. RESULTS For patients with lung adenocarcinoma and OSA, high miR-210-3p levels showed positive relation to polysomnographic variables, such as oxygen desaturation index, apnea-hypopnea index, and proportion of total sleep time with oxygen saturation in arterial blood < 90%. IH enhanced tumor viability, proliferation, migration, and invasion, downregulated E2F3 expression, and increased miR-210-3-p levels. miR-210-3p overexpression induced similar changes. These changes were reversed by miR-210-3p inhibition in vitro or miR-210-3p antagomir through intratumoral injection in vivo. CONCLUSIONS IH-induced tumor development is driven through miR-210-3p by E2F3 suppression. MiR-210-3p represents a potential therapeutic target among patients with concomitant cancer and OSA.
Collapse
Affiliation(s)
- Xiao-Bin Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, No.201, Hubin South Road, Siming District, Xiamen, Fujian, People's Republic of China.
- The Third Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
| | - Yang Song
- Ningde Food and Drug Inspection Testing Center, Ningde, Fujian, People's Republic of China
| | - Yan-Ting Lai
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, No.201, Hubin South Road, Siming District, Xiamen, Fujian, People's Republic of China
| | - Shao-Zhao Qiu
- Department of Anesthesiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - An-Ke Hu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, No.201, Hubin South Road, Siming District, Xiamen, Fujian, People's Republic of China
| | - Dai-Xi Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, No.201, Hubin South Road, Siming District, Xiamen, Fujian, People's Republic of China
| | - Nai-Shan Zheng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, No.201, Hubin South Road, Siming District, Xiamen, Fujian, People's Republic of China
| | - Hui-Qing Zeng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, No.201, Hubin South Road, Siming District, Xiamen, Fujian, People's Republic of China
| | - Qi-Chang Lin
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
9
|
Lee PWT, Koseki LR, Haitani T, Harada H, Kobayashi M. Hypoxia-Inducible Factor-Dependent and Independent Mechanisms Underlying Chemoresistance of Hypoxic Cancer Cells. Cancers (Basel) 2024; 16:1729. [PMID: 38730681 PMCID: PMC11083728 DOI: 10.3390/cancers16091729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
In hypoxic regions of malignant solid tumors, cancer cells acquire resistance to conventional therapies, such as chemotherapy and radiotherapy, causing poor prognosis in patients with cancer. It is widely recognized that some of the key genes behind this are hypoxia-inducible transcription factors, e.g., hypoxia-inducible factor 1 (HIF-1). Since HIF-1 activity is suppressed by two representative 2-oxoglutarate-dependent dioxygenases (2-OGDDs), PHDs (prolyl-4-hydroxylases), and FIH-1 (factor inhibiting hypoxia-inducible factor 1), the inactivation of 2-OGDD has been associated with cancer therapy resistance by the activation of HIF-1. Recent studies have also revealed the importance of hypoxia-responsive mechanisms independent of HIF-1 and its isoforms (collectively, HIFs). In this article, we collate the accumulated knowledge of HIF-1-dependent and independent mechanisms responsible for resistance of hypoxic cancer cells to anticancer drugs and briefly discuss the interplay between hypoxia responses, like EMT and UPR, and chemoresistance. In addition, we introduce a novel HIF-independent mechanism, which is epigenetically mediated by an acetylated histone reader protein, ATAD2, which we recently clarified.
Collapse
Affiliation(s)
- Peter Wai Tik Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Lina Rochelle Koseki
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Takao Haitani
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Jawad SF, Altalbawy FMA, Hussein RM, Fadhil AA, Jawad MA, Zabibah RS, Taraki TY, Mohan CD, Rangappa KS. The strict regulation of HIF-1α by non-coding RNAs: new insight towards proliferation, metastasis, and therapeutic resistance strategies. Cancer Metastasis Rev 2024; 43:5-27. [PMID: 37552389 DOI: 10.1007/s10555-023-10129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
The hypoxic environment is prominently witnessed in most solid tumors and is associated with the promotion of cell proliferation, epithelial-mesenchymal transition (EMT), angiogenesis, metabolic reprogramming, therapeutic resistance, and metastasis of tumor cells. All the effects are mediated by the expression of a transcription factor hypoxia-inducible factor-1α (HIF-1α). HIF-1α transcriptionally modulates the expression of genes responsible for all the aforementioned functions. The stability of HIF-1α is regulated by many proteins and non-coding RNAs (ncRNAs). In this article, we have critically discussed the crucial role of ncRNAs [such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), Piwi-interacting RNAs (piRNAs), and transfer RNA (tRNA)-derived small RNAs (tsRNAs)] in the regulation of stability and expression of HIF-1α. We have comprehensively discussed the molecular mechanisms and relationship of HIF-1α with each type of ncRNA in either promotion or repression of human cancers and therapeutic resistance. We have also elaborated on ncRNAs that are in clinical examination for the treatment of cancers. Overall, the majority of aspects concerning the relationship between HIF-1α and ncRNAs have been discussed in this article.
Collapse
Affiliation(s)
- Sabrean Farhan Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq
| | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences, University of Cairo, Giza, 12613, Egypt
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Ali Abdulhussain Fadhil
- College of Medical Technology, Medical Lab Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, 570006, India.
- FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India.
| | | |
Collapse
|
11
|
Nikolova E, Laleva L, Milev M, Spiriev T, Stoyanov S, Ferdinandov D, Mitev V, Todorova A. miRNAs and related genetic biomarkers according to the WHO glioma classification: From diagnosis to future therapeutic targets. Noncoding RNA Res 2024; 9:141-152. [PMID: 38035044 PMCID: PMC10686814 DOI: 10.1016/j.ncrna.2023.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023] Open
Abstract
In the 2021 WHO classification of Tumors of the Central Nervous System, additional molecular characteristics have been included, defining the following adult-type diffuse glioma entities: Astrocytoma IDH-mutant, Oligodendroglioma IDH-mutant and 1p/19q-codeleted, and Glioblastoma IDH-wildtype. Despite advances in genetic analysis, precision oncology, and targeted therapy, malignant adult-type diffuse gliomas remain "hard-to-treat tumors", indicating an urgent need for better diagnostic and therapeutic strategies. In the last decades, miRNA analysis has been a hotspot for researching and developing diagnostic, prognostic, and predictive biomarkers for various disorders, including brain cancer. Scientific interest has recently been directed towards therapeutic applications of miRNAs, with encouraging results. Databases such as NCBI, PubMed, and Medline were searched for a selection of articles reporting the relationship between deregulated miRNAs and genetic aberrations used in the latest WHO CNS classification. The current review discussed the recommended molecular biomarkers and genetic aberrations based on the 2021 WHO classification in adult-type diffuse gliomas, along with associated deregulated miRNAs. Additionally, the study highlights miRNA-based treatment advancements in adults with gliomas.
Collapse
Affiliation(s)
- Emiliya Nikolova
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
- Independent Medico-Diagnostic Laboratory Genome Center Bulgaria, Sofia, 1612, Bulgaria
| | - Lili Laleva
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Milko Milev
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Toma Spiriev
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Stoycho Stoyanov
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Dilyan Ferdinandov
- Department of Neurosurgery, Medical University – Sofia, Sofia, 1431, Bulgaria
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
- Independent Medico-Diagnostic Laboratory Genome Center Bulgaria, Sofia, 1612, Bulgaria
| |
Collapse
|
12
|
Di Giulio S, Carata E, Muci M, Mariano S, Panzarini E. Impact of hypoxia on the molecular content of glioblastoma-derived exosomes. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:1-15. [PMID: 39698411 PMCID: PMC11648508 DOI: 10.20517/evcna.2023.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/28/2023] [Accepted: 01/04/2024] [Indexed: 12/20/2024]
Abstract
Hypoxia is a pathologic condition characterized by a tissue oxygen deficiency due to either decreased oxygen intake from outside and/or disruption of oxygen utilization in cells. This condition may arise when the oxygen demand exceeds its supply or the partial pressure of oxygen is below 10 mmHg. This situation poses a significant problem for glioblastoma (GBM) patients as it can activate angiogenesis, increase invasiveness and metastatic risk, prolong tumor survival, and suppress anti-tumor immunity, making hypoxic cells resistant to radiotherapy and chemotherapy. Low oxygen levels in tumors can cause severe cellular changes that can affect the release of extracellular vesicles (EVs), especially exosomes (EXOs), altering their proteomic profile both qualitatively and quantitatively. EXOs represent an adaptive response to hypoxic stress; therefore, they can be used to determine oxygen levels in cancer and assess its aggressiveness. They not only release signaling molecules to attract cells that promote the formation of small vessel walls but also send signals to other tumor cells that trigger their migration, which in turn plays a crucial role in the formation of metastases under hypoxia. This review investigates how the molecular profile of GBM-derived exosomes changes under hypoxic conditions, offering future possibilities for noninvasive diagnosis and monitoring of brain tumor patients.
Collapse
Affiliation(s)
| | - Elisabetta Carata
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce 73100, Italy
| | | | | | - Elisa Panzarini
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce 73100, Italy
| |
Collapse
|
13
|
Srivastava R, Dodda M, Zou H, Li X, Hu B. Tumor Niches: Perspectives for Targeted Therapies in Glioblastoma. Antioxid Redox Signal 2023; 39:904-922. [PMID: 37166370 PMCID: PMC10654996 DOI: 10.1089/ars.2022.0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
Significance: Glioblastoma (GBM), the most common and lethal primary brain tumor with a median survival rate of only 15 months and a 5-year survival rate of only 6.8%, remains largely incurable despite the intensive multimodal treatment of surgical resection and radiochemotherapy. Developing effective new therapies is an unmet need for patients with GBM. Recent Advances: Targeted therapies, such as antiangiogenesis therapy and immunotherapy, show great promise in treating GBM based upon increasing knowledge about brain tumor biology. Single-cell transcriptomics reveals the plasticity, heterogeneity, and dynamics of tumor cells during GBM development and progression. Critical Issues: While antiangiogenesis therapy and immunotherapy have been highly effective in some types of cancer, the disappointing results from clinical trials represent continued challenges in applying these treatments to GBM. Molecular and cellular heterogeneity of GBM is developed temporally and spatially, which profoundly contributes to therapeutic resistance and tumor recurrence. Future Directions: Deciphering mechanisms of tumor heterogeneity and mapping tumor niche trajectories and functions will provide a foundation for the development of more effective therapies for GBM patients. In this review, we discuss five different tumor niches and the intercellular and intracellular communications among these niches, including the perivascular, hypoxic, invasive, immunosuppressive, and glioma-stem cell niches. We also highlight the cellular and molecular biology of these niches and discuss potential strategies to target these tumor niches for GBM therapy. Antioxid. Redox Signal. 39, 904-922.
Collapse
Affiliation(s)
- Rashmi Srivastava
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Meghana Dodda
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Han Zou
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Changsha, China
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Shree B, Sharma V. Role of Non-Coding RNAs in TGF-β Signalling in Glioma. Brain Sci 2023; 13:1376. [PMID: 37891744 PMCID: PMC10605910 DOI: 10.3390/brainsci13101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Brain tumours and Gliomas, in particular, are among the primary causes of cancer mortality worldwide. Glioma diagnosis and therapy have not significantly improved despite decades of efforts. Autocrine TGF-β signalling promotes glioma proliferation, invasion, epithelial-to-mesenchymal transition (EMT), and drug resistance. Non-coding RNAs such as miRNA, lncRNA, and circRNAs have emerged as critical transcriptional and post-transcriptional regulators of TGF-β pathway components in glioma. Here, we summarize the complex regulatory network among regulatory ncRNAs and TGF-β pathway during Glioma pathogenesis and discuss their role as potential therapeutic targets for Gliomas.
Collapse
Affiliation(s)
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, India;
| |
Collapse
|
15
|
Patra D, Roy S, Arora L, Kabeer SW, Singh S, Dey U, Banerjee D, Sinha A, Dasgupta S, Tikoo K, Kumar A, Pal D. miR-210-3p Promotes Obesity-Induced Adipose Tissue Inflammation and Insulin Resistance by Targeting SOCS1-Mediated NF-κB Pathway. Diabetes 2023; 72:375-388. [PMID: 36469307 DOI: 10.2337/db22-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Under the condition of chronic obesity, an increased level of free fatty acids along with low oxygen tension in the adipose tissue creates a pathophysiological adipose tissue microenvironment (ATenv), leading to the impairment of adipocyte function and insulin resistance. Here, we found the synergistic effect of hypoxia and lipid (H + L) surge in fostering adipose tissue macrophage (ATM) inflammation and polarization. ATenv significantly increased miR-210-3p expression in ATMs which promotes NF-κB activation-dependent proinflammatory cytokine expression along with the downregulation of anti-inflammatory cytokine expression. Interestingly, delivery of miR-210-3p mimic significantly increased macrophage inflammation in the absence of H + L co-stimulation, while miR-210-3p inhibitor notably compromised H + L-induced macrophage inflammation through increased production of suppressor of cytokine signaling 1 (SOCS1), a negative regulator of the NF-κB inflammatory signaling pathway. Mechanistically, miR-210 directly binds to the 3'-UTR of SOCS1 mRNA and silences its expression, thus preventing proteasomal degradation of NF-κB p65. Direct delivery of anti-miR-210-3p LNA in the ATenv markedly rescued mice from obesity-induced adipose tissue inflammation and insulin resistance. Thus, miR-210-3p inhibition in ATMs could serve as a novel therapeutic strategy for managing obesity-induced type 2 diabetes.
Collapse
Affiliation(s)
- Debarun Patra
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, India
| | - Soumyajit Roy
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, India
| | - Leena Arora
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, India
| | - Shaheen Wasil Kabeer
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Satpal Singh
- Department of Gastro Surgery, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Upalabdha Dey
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Dipanjan Banerjee
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Archana Sinha
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Suman Dasgupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, India
| |
Collapse
|
16
|
Shi J, Yang N, Han M, Qiu C. Emerging roles of ferroptosis in glioma. Front Oncol 2022; 12:993316. [PMID: 36072803 PMCID: PMC9441765 DOI: 10.3389/fonc.2022.993316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022] Open
Abstract
Glioma is the most common primary malignant tumor in the central nervous system, and directly affects the quality of life and cognitive function of patients. Ferroptosis, is a new form of regulated cell death characterized by iron-dependent lipid peroxidation. Ferroptosis is mainly due to redox imbalance and involves multiple intracellular biology processes, such as iron metabolism, lipid metabolism, and antioxidants synthesis. Induction of ferroptosis could be a new target for glioma treatment, and ferroptosis-related processes are associated with chemoresistance and radioresistance in glioma. In the present review, we provide the characteristics, key regulators and pathways of ferroptosis and the crosstalk between ferroptosis and other programmed cell death in glioma, we also proposed the application and prospect of ferroptosis in the treatment of glioma.
Collapse
Affiliation(s)
- Jiaqi Shi
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Qiu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Chen Qiu,
| |
Collapse
|
17
|
Mafi A, Rahmati A, Babaei Aghdam Z, Salami R, Salami M, Vakili O, Aghadavod E. Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment. Cell Mol Biol Lett 2022; 27:65. [PMID: 35922753 PMCID: PMC9347108 DOI: 10.1186/s11658-022-00354-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022] Open
Abstract
Gliomas are the most lethal primary brain tumors in adults. These highly invasive tumors have poor 5-year survival for patients. Gliomas are principally characterized by rapid diffusion as well as high levels of cellular heterogeneity. However, to date, the exact pathogenic mechanisms, contributing to gliomas remain ambiguous. MicroRNAs (miRNAs), as small noncoding RNAs of about 20 nucleotides in length, are known as chief modulators of different biological processes at both transcriptional and posttranscriptional levels. More recently, it has been revealed that these noncoding RNA molecules have essential roles in tumorigenesis and progression of multiple cancers, including gliomas. Interestingly, miRNAs are able to modulate diverse cancer-related processes such as cell proliferation and apoptosis, invasion and migration, differentiation and stemness, angiogenesis, and drug resistance; thus, impaired miRNAs may result in deterioration of gliomas. Additionally, miRNAs can be secreted into cerebrospinal fluid (CSF), as well as the bloodstream, and transported between normal and tumor cells freely or by exosomes, converting them into potential diagnostic and/or prognostic biomarkers for gliomas. They would also be great therapeutic agents, especially if they could cross the blood–brain barrier (BBB). Accordingly, in the current review, the contribution of miRNAs to glioma pathogenesis is first discussed, then their glioma-related diagnostic/prognostic and therapeutic potential is highlighted briefly.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Basic Science, Neyshabur University of Medical Science, Neyshabur, Iran
| | - Zahra Babaei Aghdam
- Imaging Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran. .,Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
18
|
Epithelial-Mesenchymal Transition-Mediated Tumor Therapeutic Resistance. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154750. [PMID: 35897925 PMCID: PMC9331826 DOI: 10.3390/molecules27154750] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/17/2022]
Abstract
Cancer is one of the world’s most burdensome diseases, with increasing prevalence and a high mortality rate threat. Tumor recurrence and metastasis due to treatment resistance are two of the primary reasons that cancers have been so difficult to treat. The epithelial–mesenchymal transition (EMT) is essential for tumor drug resistance. EMT causes tumor cells to produce mesenchymal stem cells and quickly adapt to various injuries, showing a treatment-resistant phenotype. In addition, multiple signaling pathways and regulatory mechanisms are involved in the EMT, resulting in resistance to treatment and hard eradication of the tumors. The purpose of this study is to review the link between EMT, therapeutic resistance, and the molecular process, and to offer a theoretical framework for EMT-based tumor-sensitization therapy.
Collapse
|
19
|
Sirtuins and Hypoxia in EMT Control. Pharmaceuticals (Basel) 2022; 15:ph15060737. [PMID: 35745656 PMCID: PMC9228842 DOI: 10.3390/ph15060737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT), a physiological process during embryogenesis, can become pathological in the presence of different driving forces. Reduced oxygen tension or hypoxia is one of these forces, triggering a large number of molecular pathways with aberrant EMT induction, resulting in cancer and fibrosis onset. Both hypoxia-induced factors, HIF-1α and HIF-2α, act as master transcription factors implicated in EMT. On the other hand, hypoxia-dependent HIF-independent EMT has also been described. Recently, a new class of seven proteins with deacylase activity, called sirtuins, have been implicated in the control of both hypoxia responses, HIF-1α and HIF-2α activation, as well as EMT induction. Intriguingly, different sirtuins have different effects on hypoxia and EMT, acting as either activators or inhibitors, depending on the tissue and cell type. Interestingly, sirtuins and HIF can be activated or inhibited with natural or synthetic molecules. Moreover, recent studies have shown that these natural or synthetic molecules can be better conveyed using nanoparticles, representing a valid strategy for EMT modulation. The following review, by detailing the aspects listed above, summarizes the interplay between hypoxia, sirtuins, and EMT, as well as the possible strategies to modulate them by using a nanoparticle-based approach.
Collapse
|
20
|
Qiao L, Chen Y, Liang N, Xie J, Deng G, Chen F, Wang X, Liu F, Li Y, Zhang J. Targeting Epithelial-to-Mesenchymal Transition in Radioresistance: Crosslinked Mechanisms and Strategies. Front Oncol 2022; 12:775238. [PMID: 35251963 PMCID: PMC8888452 DOI: 10.3389/fonc.2022.775238] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy exerts a crucial role in curing cancer, however, its treatment efficiency is mostly limited due to the presence of radioresistance. Epithelial-to-mesenchymal transition (EMT) is a biological process that endows the cancer cells with invasive and metastatic properties, as well as radioresistance. Many potential mechanisms of EMT-related radioresistance being reported have broaden our cognition, and hint us the importance of an overall understanding of the relationship between EMT and radioresistance. This review focuses on the recent progresses involved in EMT-related mechanisms in regulating radioresistance, irradiation-mediated EMT program, and the intervention strategies to increase tumor radiosensitivity, in order to improve radiotherapy efficiency and clinical outcomes of cancer patients.
Collapse
Affiliation(s)
- Lili Qiao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Yanfei Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Jian Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Guodong Deng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Fangjie Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Xiaojuan Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Fengjun Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Yupeng Li
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| |
Collapse
|
21
|
Kaitsuka T, Matsushita M, Matsushita N. Regulation of Hypoxic Signaling and Oxidative Stress via the MicroRNA-SIRT2 Axis and Its Relationship with Aging-Related Diseases. Cells 2021; 10:cells10123316. [PMID: 34943825 PMCID: PMC8699081 DOI: 10.3390/cells10123316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023] Open
Abstract
The sirtuin family of nicotinamide adenine dinucleotide-dependent deacetylase and ADP-ribosyl transferases plays key roles in aging, metabolism, stress response, and aging-related diseases. SIRT2 is a unique sirtuin that is expressed in the cytosol and is abundant in neuronal cells. Various microRNAs were recently reported to regulate SIRT2 expression via its 3'-untranslated region (UTR), and single nucleotide polymorphisms in the miRNA-binding sites of SIRT2 3'-UTR were identified in patients with neurodegenerative diseases. The present review highlights recent studies into SIRT2-mediated regulation of the stress response, posttranscriptional regulation of SIRT2 by microRNAs, and the implications of the SIRT2-miRNA axis in aging-related diseases.
Collapse
Affiliation(s)
- Taku Kaitsuka
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka 831-8501, Japan;
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan;
| | - Nobuko Matsushita
- Laboratory of Hygiene and Public Health, Department of Medical Technology, School of Life and Environmental Science, Azabu University, Sagamihara 252-5201, Japan
- Correspondence: ; Tel.: +81-42-769-1937
| |
Collapse
|
22
|
Xie F, Xiao W, Tian Y, Lan Y, Zhang C, Bai L. MicroRNA-195-3p inhibits cyclin dependent kinase 1 to induce radiosensitivity in nasopharyngeal carcinoma. Bioengineered 2021; 12:7325-7334. [PMID: 34585634 PMCID: PMC8806460 DOI: 10.1080/21655979.2021.1979356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are revealed to participate in the progression of multiple malignancies, including nasopharyngeal carcinoma (NPC). This work is intended to decipher the function of microRNA-195-3p (miR-195-3p) in regulating the radiosensitivity of NPC cells and its mechanism. MiR-195-3p and cyclin-dependent kinase 1 (CDK1) expressions were detected in NPC tissues and cells using qRT-PCR and Western blot, respectively. Moreover, radiation-resistant cell lines were induced by continuous irradiation with different doses. Furthermore, the CCK-8 experiment, colony formation assay and flow cytometry were utilized to examine the growth, apoptosis and cell cycle of radioresistant cells. Bioinformatics prediction and dual-luciferase reporter gene assay were applied to prove the targeting relationship between miR-195-3p and CDK1 mRNA 3ʹUTR. The data showed that miR-195-3p was remarkably down-modulated in NPC tissues and was associated with increased tumor grade, lymph node metastasis and clinical stage of the patients. MiR-195-3p expression was significantly down-modulated in radiation-resistant NPC tissues and NPC cell lines relative to radiation-sensitive NPC tissues and human nasopharyngeal epithelial cells, while CDK1 expression was notably up-modulated. MiR-195-3p overexpression inhibited the growth of NPC cells, decreased radioresistance, promoted apoptosis, and impeded the cell cycle progression. CDK1 was a target gene of miR-195-3p, and CDK1 overexpression counteracted the effects of miR-195-3p on NPC cell growth, apoptosis, cell cycle progression and radiosensitivity. In summary, miR-195-3p improves the radiosensitivity of NPC cells by targeting and regulating CDK1.
Collapse
Affiliation(s)
- Fuchuan Xie
- Department of Radiation Oncology, Huizhou Municipal Central Hospital, Guangdong, China
| | - Wei Xiao
- Department of Radiation Oncology, Huizhou Municipal Central Hospital, Guangdong, China
| | - Yunming Tian
- Department of Radiation Oncology, Huizhou Municipal Central Hospital, Guangdong, China
| | - Yuhong Lan
- Department of Radiation Oncology, Huizhou Municipal Central Hospital, Guangdong, China
| | - Chi Zhang
- Department of Radiation Oncology, Huizhou Municipal Central Hospital, Guangdong, China
| | - Li Bai
- Department of Radiation Oncology, Huizhou Municipal Central Hospital, Guangdong, China
| |
Collapse
|