1
|
Stupak EV, Glotov VM, Askandaryan AS, Clancy SE, Hiana JC, Cherkasova OP, Stupak VV. Raman Spectroscopy in the Diagnosis of Brain Gliomas: A Literature Review. Cureus 2025; 17:e79165. [PMID: 40109807 PMCID: PMC11921993 DOI: 10.7759/cureus.79165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2025] [Indexed: 03/22/2025] Open
Abstract
Raman spectroscopy (RS) is increasingly applied in medical fields to distinguish neoplastic from normal tissues, with recent advancements enabling its use in neurosurgery. This review explores RS as a diagnostic and surgical aid for brain gliomas, detailing its various modalities and applications. Through a comprehensive search in databases including PubMed, Google Scholar, and eLibrary, over 300 references were screened, resulting in 74 articles that met inclusion criteria. Key findings reveal RS's potential in neuro-oncology for examining native biopsy specimens, frozen and paraffin-embedded tissues, and body fluids, as well as performing intraoperative assessments. RS offers promise for identifying gliomas, differentiating them from healthy brain tissue, and establishing precise tumor boundaries during resection.
Collapse
Affiliation(s)
- Evgeny V Stupak
- Department of Neurosurgery, Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Novosibirsk, RUS
| | - Vadim M Glotov
- Department of Neurosurgery, Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Novosibirsk, RUS
| | | | - Sarah E Clancy
- College of Medicine, William Carey University College of Osteopathic Medicine, Hattiesburg, USA
| | - James C Hiana
- Department of Neurology, State University of New York Downstate Medical Center, New York, USA
| | - Olga P Cherkasova
- Laboratory of Terahertz Photonics, Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RUS
- Automation and Computer Engineering Department, Novosibirsk State Technical University, Novosibirsk, RUS
| | - Vyacheslav V Stupak
- Department of Neurosurgery, Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Novosibirsk, RUS
| |
Collapse
|
2
|
Deng F, Feng CH, Gao N, Zhang L. Normalization and selecting non-differentially expressed genes improve machine learning modelling of cross-platform transcriptomic data. ARXIV 2025:arXiv:2501.14248v1. [PMID: 39975431 PMCID: PMC11838701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Normalization is a critical step in quantitative analyses of biological processes. Recent works show that cross-platform integration and normalization enable machine learning (ML) training on RNA microarray and RNA-seq data, but no independent datasets were used in their studies. Therefore, it is unclear how to improve ML modelling performance on independent RNA array and RNA-seq based datasets. Inspired by the house-keeping genes that are commonly used in experimental biology, this study tests the hypothesis that non-differentially expressed genes (NDEG) may improve normalization of transcriptomic data and subsequently cross-platform modelling performance of ML models. Microarray and RNA-seq datasets of the TCGA breast cancer were used as independent training and test datasets, respectively, to classify the molecular subtypes of breast cancer. NDEG (p>0.85) and differentially expressed genes (DEG, p<0.05) were selected based on the p values of ANOVA analysis and used for subsequent data normalization and classification, respectively. Models trained based on data from one platform were used for testing on the other platform. Our data show that NDEG and DEG gene selection could effectively improve the model classification performance. Normalization methods based on parametric statistical analysis were inferior to those based on nonparametric statistics. In this study, the LOG_QN and LOG_QNZ normalization methods combined with the neural network classification model seem to achieve better performance. Therefore, NDEG-based normalization appears useful for cross-platform testing on completely independent datasets. However, more studies are required to examine whether NDEG-based normalization can improve ML classification performance in other datasets and other omic data types.
Collapse
Affiliation(s)
- Fei Deng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Catherine H Feng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
- Harvard University, Cambridge, MA, USA
| | - Nan Gao
- Department of Biological Sciences, School of Arts & Sciences, Rutgers University, Newark, NJ, USA
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Lanjing Zhang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Department of Pathology, Princeton Medical Center, Plainsboro, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
3
|
Veryaskina YA, Titov SE, Skvortsova NV, Kovynev IB, Antonenko OV, Demakov SA, Demenkov PS, Pospelova TI, Ivanov MK, Zhimulev IF. Multiple Myeloma: Genetic and Epigenetic Biomarkers with Clinical Potential. Int J Mol Sci 2024; 25:13404. [PMID: 39769169 PMCID: PMC11679576 DOI: 10.3390/ijms252413404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Multiple myeloma (MM) is characterized by the uncontrolled proliferation of monoclonal plasma cells and accounts for approximately 10% of all hematologic malignancies. The clinical outcomes of MM can exhibit considerable variability. Variability in both the genetic and epigenetic characteristics of MM undeniably contributes to tumor dynamics. The aim of the present study was to identify biomarkers with the potential to improve the accuracy of prognosis assessment in MM. Initially, miRNA sequencing was conducted on bone marrow (BM) samples from patients with MM. Subsequently, the expression levels of 27 microRNAs (miRNA) and the gene expression levels of ASF1B, CD82B, CRISP3, FN1, MEF2B, PD-L1, PPARγ, TERT, TIMP1, TOP2A, and TP53 were evaluated via real-time reverse transcription polymerase chain reaction in BM samples from patients with MM exhibiting favorable and unfavorable prognoses. Additionally, the analysis involved the bone marrow samples from patients undergoing examinations for non-cancerous blood diseases (NCBD). The findings indicate a statistically significant increase in the expression levels of miRNA-124, -138, -10a, -126, -143, -146b, -20a, -21, -29b, and let-7a and a decrease in the expression level of miRNA-96 in the MM group compared with NCBD (p < 0.05). No statistically significant differences were detected in the expression levels of the selected miRNAs between the unfavorable and favorable prognoses in MM groups. The expression levels of ASF1B, CD82B, and CRISP3 were significantly decreased, while those of FN1, MEF2B, PDL1, PPARγ, and TERT were significantly increased in the MM group compared to the NCBD group (p < 0.05). The MM group with a favorable prognosis demonstrated a statistically significant decline in TIMP1 expression and a significant increase in CD82B and CRISP3 expression compared to the MM group with an unfavorable prognosis (p < 0.05). From an empirical point of view, we have established that the complex biomarker encompassing the CRISP3/TIMP1 expression ratio holds promise as a prognostic marker in MM. From a fundamental point of view, we have demonstrated that the development of MM is rooted in a cascade of complex molecular pathways, demonstrating the interplay of genetic and epigenetic factors.
Collapse
Affiliation(s)
- Yuliya A. Veryaskina
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
- Laboratory of Gene Engineering, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei E. Titov
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
- AO Vector-Best, Novosibirsk 630117, Russia;
| | - Natalia V. Skvortsova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk 630091, Russia; (N.V.S.); (I.B.K.); (T.I.P.)
| | - Igor B. Kovynev
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk 630091, Russia; (N.V.S.); (I.B.K.); (T.I.P.)
| | - Oksana V. Antonenko
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
| | - Sergei A. Demakov
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
| | - Pavel S. Demenkov
- Laboratory of Computer Proteomics, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Tatiana I. Pospelova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk 630091, Russia; (N.V.S.); (I.B.K.); (T.I.P.)
| | | | - Igor F. Zhimulev
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (S.E.T.); (O.V.A.); (S.A.D.); (I.F.Z.)
| |
Collapse
|
4
|
Mack T, Gianferri T, Niedermayer A, Debatin KM, Meyer LH, Muench V. Benchmarking miRNA reference genes in B-cell precursor acute lymphoblastic leukemia. Sci Rep 2024; 14:26390. [PMID: 39488607 PMCID: PMC11531470 DOI: 10.1038/s41598-024-77733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
MicroRNAs (miRNAs) play dual roles in acute lymphoblastic leukemia (ALL) as both tumor suppressors and oncogenes, and miRNA expression profiles can be used for patient risk stratification. Precise assessment of miRNA levels is crucial for understanding their role and function in gene regulation. Quantitative real-time polymerase chain reaction (qPCR) is a reliable, rapid, and cost-effective method for analyzing miRNA expression, assuming that appropriate normalization to stable references is performed to ensure valid data. In this study, we evaluated the stability of six commonly used miRNA references (5sRNA, SNORD44, RNU6, RNU1A1, miR-103a-3p, and miR-532-5p) across nine B-cell precursor (BCP) ALL cell lines, 22 patient-derived xenograft (PDX) BCP ALL samples from different organ compartments of leukemia bearing mice, and peripheral blood mononuclear cells (PBMCs) from six healthy donors. We used four different algorithms (Normfinder, ∆CT, geNorm, and BestKeeper) to assess the most stably expressed reference across all samples. Moreover, we validated our data in an additional set of 13 PDX ALL samples and six healthy controls, identifying miR-103a-3p and miR-532-5p as the most stable references for miRNA normalization in BCP ALL studies. Additionally, we demonstrated the critical importance of using a stable reference to accurately interpret miRNA data.
Collapse
Affiliation(s)
- Teresa Mack
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Tommaso Gianferri
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Alexandra Niedermayer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Lüder H Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Vera Muench
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
5
|
Szubert M, Nowak-Glück A, Domańska-Senderowska D, Szymańska B, Sowa P, Rycerz A, Wilczyński JR. miRNA Expression Profiles in Ovarian Endometriosis and Two Types of Ovarian Cancer-Endometriosis-Associated Ovarian Cancer and High-Grade Ovarian Cancer. Int J Mol Sci 2023; 24:17470. [PMID: 38139300 PMCID: PMC10743418 DOI: 10.3390/ijms242417470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Endometriosis-associated ovarian cancer (EOC) consisting of endometrioid cancer and clear-cell ovarian cancer could be promoted by many factors. miRNAs, which are small, non-coding molecules of RNA, are among them. The aim of this study was to detect miRNAs connected with the malignant transformation of endometriosis. FFPE (formalin-fixed, paraffin-embedded) samples of 135 patients operated on for endometriosis and different types of ovarian cancer (EOC and HGSOC-high-grade serous ovarian cancer) were studied. Healthy ovarian tissue was used as a control group. From the expression panel of 754 miRNAs, 7 were chosen for further tests according to their ROC (receiver operating characteristic) curves: miR-1-3p, miR-125b-1-3p, miR-31-3p, miR-200b-3p, miR-502-5p, miR-503-5p and miR-548d-5p. Furthermore, other potentially important clinical data were analysed, which included age, BMI, Ca-125 concentration, miscarriages and deliveries and concomitant diseases such as hypertension, type 2 diabetes and smoking. Among the miRNAs, miR200b-3p had the lowest expression in neoplastic tissues. miR31-3p had the highest expression in women without any lesions in the ovaries. miR-502-5p and miR-548-5p did not differ between the studied groups. The examined miRNA panel generally distinguished significantly normal ovarian tissue and endometriosis, normal ovarian tissue and cancer, and endometriosis and cancer. The malignant transformation of endometriosis is dependent on different factors. miRNA changes are among them. The studied miRNA panel described well the differences between endometriosis and EOC but had no potential to differentiate types of ovarian cancer according to their origin. Therefore, examination of a broader miRNA panel is needed and might prove itself advantageous in clinical practice.
Collapse
Affiliation(s)
- Maria Szubert
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, M. Pirogow’s Teaching Hospital, Medical University of Lodz, Wilenska 37 St., 94-029 Lodz, Poland; (A.N.-G.); (A.R.); (J.R.W.)
- Club 35. Polish Society of Gynaecologists and Obstetricians, ul. Cybernetyki 7F/87, 02-677 Warsaw, Poland
| | - Anna Nowak-Glück
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, M. Pirogow’s Teaching Hospital, Medical University of Lodz, Wilenska 37 St., 94-029 Lodz, Poland; (A.N.-G.); (A.R.); (J.R.W.)
| | | | - Bożena Szymańska
- Research Laboratory CoreLab, Medical University of Lodz, Mazowiecka 6/8 St., 92-215 Lodz, Poland;
| | - Piotr Sowa
- Department of Pathology, M. Pirogow’s Teaching Hospital, Wilenska 37 St., 94-029 Lodz, Poland;
| | - Aleksander Rycerz
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, M. Pirogow’s Teaching Hospital, Medical University of Lodz, Wilenska 37 St., 94-029 Lodz, Poland; (A.N.-G.); (A.R.); (J.R.W.)
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Mazowiecka 15 St., 92-215 Lodz, Poland
| | - Jacek R. Wilczyński
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, M. Pirogow’s Teaching Hospital, Medical University of Lodz, Wilenska 37 St., 94-029 Lodz, Poland; (A.N.-G.); (A.R.); (J.R.W.)
| |
Collapse
|
6
|
Yan H, Wen Y, Tian Z, Hart N, Han S, Hughes SJ, Zeng Y. A one-pot isothermal Cas12-based assay for the sensitive detection of microRNAs. Nat Biomed Eng 2023; 7:1583-1601. [PMID: 37106152 PMCID: PMC11108682 DOI: 10.1038/s41551-023-01033-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023]
Abstract
The use of microRNAs as clinical cancer biomarkers is hindered by the absence of accurate, fast and inexpensive assays for their detection in biofluids. Here we report a one-step and one-pot isothermal assay that leverages rolling-circle amplification and the endonuclease Cas12a for the accurate detection of specific miRNAs. The assay exploits the cis-cleavage activity of Cas12a to enable exponential rolling-circle amplification of target sequences and its trans-cleavage activity for their detection and for signal amplification. In plasma from patients with pancreatic ductal adenocarcinoma, the assay detected the miRNAs miR-21, miR-196a, miR-451a and miR-1246 in extracellular vesicles at single-digit femtomolar concentrations with single-nucleotide specificity. The assay is rapid (sample-to-answer times ranged from 20 min to 3 h), does not require specialized instrumentation and is compatible with a smartphone-based fluorescence detection and with the lateral-flow format for visual readouts. Simple assays for the detection of miRNAs in blood may aid the development of miRNAs as biomarkers for the diagnosis and prognosis of cancers.
Collapse
Affiliation(s)
- He Yan
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Yunjie Wen
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Zimu Tian
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Nathan Hart
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Song Han
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Steven J Hughes
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- University of Florida Health Cancer Center, Gainesville, FL, USA.
| |
Collapse
|