1
|
He L, Xiao C, Zhu L, Deng W, Zhang Y, Li Y, Wu X, Wu H, Xu H, Jia J. GABA-Decorated Nanocarrier for Smart Delivery of Fludioxonil for Targeted Control of Banana Wilt Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39417336 DOI: 10.1021/acs.jafc.4c07549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Developing a targeted nanopesticide to control the vascular disease of banana in agriculture is crucial to improve pesticide utilization. In this study, according to the degree of functionalization, three γ-aminobutyric acid (GABA)-decorated nanocarriers (PSI-GABA8, PSI-GABA18, and PSI-GABA28) were constructed for smart delivery of nonsystemic fungicide in banana phloem tissues. Fludioxonil (Flu) was loaded in nanocarriers to form Flu@PSI-GABA nanoparticles with a core/shell structure for control of banana wilt disease. Results demonstrated that the delivery dosage of Flu was up to 1.6 mg/L in castor phloem sap using PSI-GABA28 nanocarriers. In vitro results showed that the EC50 of Flu@PSI-GABA28 was 0.0116 mg/L, and the inhibitory activity was about 8.8 times higher than that of technical-grade (TC) Flu. Flu@PSI-GABA28 could be transported for long distances and accumulated to the rhizome of banana by foliar application, and the control effectiveness was about 20 times that of the conventional Flu (50% WP) for the banana wilt. This study provides a distinctive guidance for effective control of vascular diseases in precision agriculture application.
Collapse
Affiliation(s)
- Liangheng He
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Chunxia Xiao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Li Zhu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wenjie Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yanheng Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yang Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xinzhou Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Hanxiang Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Jinliang Jia
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
2
|
Molnar K, Sasidharan Pillai A, Chen D, Kaszas G, McKenna GB, Kornfield JA, Puskas JE. Investigation of the Structure, Filler Interaction and Degradation of Disulfide Elastomers made by Reversible Radical Recombination Polymerization (R3P). Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
3
|
Szilágyi BÁ, Gyarmati B, Kiss EL, Budai-Szűcs M, Misra A, Csányi E, László K, Szilágyi A. In situ gelation of thiolated poly(aspartic acid) derivatives through oxidant-free disulfide formation for ophthalmic drug delivery. Colloids Surf B Biointerfaces 2023; 225:113254. [PMID: 36996632 DOI: 10.1016/j.colsurfb.2023.113254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Efficient topical treatment of ocular diseases requires a prolonged residence time of drug formulations. An in situ gelling, mucoadhesive system can provide improved residence time while keeps the installation of the formulation easy and accurate due to its low initial viscosity. We synthesized a two-component, biocompatible water-based liquid formulation showing in situ gelation upon mixing. S-protected, preactivated derivatives of thiolated poly(aspartic acid) (PASP-SS-MNA) were synthesized by coupling the free thiol groups of thiolated poly(aspartic acid) (PASP-SH) with 6-mercaptonicotinic acid (MNA). The amount of protecting groups was 242, 341, and 530 µmol/g depending on the degree of thiolation of PASP. The chemical interaction between PASP-SS-MNA and mucin was proven, indicating the mucoadhesive properties. Disulfide cross-linked hydrogels were formed in situ without an oxidizing agent by mixing the aqueous solutions of PASP-SS-MNA and PASP-SH. The gelation time was controlled between 1 and 6 min, while the storage modulus was as high as 4-16 kPa depending on the composition. Swelling experiments showed that hydrogels with no residual thiol groups are stable in phosphate-buffered saline at pH = 7.4. In contrast, the presence of free thiol groups leads to the dissolution of the hydrogel with a rate depending on the excess of thiol groups. The biological safety of the polymers and MNA was confirmed on Madin-Darby Canine Kidney cell line. Furthermore, a prolonged release of ofloxacin was observed at pH = 7.4 compared to a conventional liquid formulation, supporting the potential of the developed biopolymers in ophthalmic drug delivery.
Collapse
|
4
|
Pázmány R, Nagy KS, Zsembery Á, Jedlovszky–Hajdu A. Ultrasound induced, easy-to-store porous poly(amino acid) based electrospun scaffolds. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Veres T, Voniatis C, Molnár K, Nesztor D, Fehér D, Ferencz A, Gresits I, Thuróczy G, Márkus BG, Simon F, Nemes NM, García-Hernández M, Reiniger L, Horváth I, Máthé D, Szigeti K, Tombácz E, Jedlovszky-Hajdu A. An Implantable Magneto-Responsive Poly(aspartamide) Based Electrospun Scaffold for Hyperthermia Treatment. NANOMATERIALS 2022; 12:nano12091476. [PMID: 35564185 PMCID: PMC9101327 DOI: 10.3390/nano12091476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023]
Abstract
When exposed to an alternating magnetic field, superparamagnetic nanoparticles can elicit the required hyperthermic effect while also being excellent magnetic resonance imaging (MRI) contrast agents. Their main drawback is that they diffuse out of the area of interest in one or two days, thus preventing a continuous application during the typical several-cycle multi-week treatment. To solve this issue, our aim was to synthesise an implantable, biodegradable membrane infused with magnetite that enabled long-term treatment while having adequate MRI contrast and hyperthermic capabilities. To immobilise the nanoparticles inside the scaffold, they were synthesised inside hydrogel fibres. First, polysuccinimide (PSI) fibres were produced by electrospinning and crosslinked, and then, magnetitc iron oxide nanoparticles (MIONs) were synthesised inside and in-between the fibres of the hydrogel membranes with the well-known co-precipitation method. The attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) investigation proved the success of the chemical synthesis and the presence of iron oxide, and the superconducting quantum interference device (SQUID) study revealed their superparamagnetic property. The magnetic hyperthermia efficiency of the samples was significant. The given alternating current (AC) magnetic field could induce a temperature rise of 5 °C (from 37 °C to 42 °C) in less than 2 min even for five quick heat-cool cycles or for five consecutive days without considerable heat generation loss in the samples. Short-term (1 day and 7 day) biocompatibility, biodegradability and MRI contrast capability were investigated in vivo on Wistar rats. The results showed excellent MRI contrast and minimal acute inflammation.
Collapse
Affiliation(s)
- Tamás Veres
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, 1089 Budapest, Hungary; (T.V.); (C.V.); (K.M.)
| | - Constantinos Voniatis
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, 1089 Budapest, Hungary; (T.V.); (C.V.); (K.M.)
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary
| | - Kristóf Molnár
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, 1089 Budapest, Hungary; (T.V.); (C.V.); (K.M.)
| | - Dániel Nesztor
- Department of Food Engineering, University of Szeged, 6725 Szeged, Hungary; (D.N.); (E.T.)
| | - Daniella Fehér
- Heart and Vascular Centre, Department of Surgical Research and Techniques, Semmelweis University, 1122 Budapest, Hungary; (D.F.); (A.F.)
| | - Andrea Ferencz
- Heart and Vascular Centre, Department of Surgical Research and Techniques, Semmelweis University, 1122 Budapest, Hungary; (D.F.); (A.F.)
| | - Iván Gresits
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (I.G.); (I.H.); (D.M.); (K.S.)
| | - György Thuróczy
- NRIRR “Frédéric Joliot-Curie” National Research Institute for Radiobiology and Radiohygiene, 1221 Budapest, Hungary;
| | - Bence Gábor Márkus
- Stavropoulos Center for Complex Quantum Matter, Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA;
- Institute of Physics, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
- Wigner Research Centre for Physics Economics, 1121 Budapest, Hungary
| | - Ferenc Simon
- Institute of Physics, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
- Wigner Research Centre for Physics Economics, 1121 Budapest, Hungary
| | - Norbert Marcell Nemes
- Grupo de Física de Materiales Complejos (GFMC), Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.M.N.); (M.G.-H.)
| | - Mar García-Hernández
- Grupo de Física de Materiales Complejos (GFMC), Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.M.N.); (M.G.-H.)
| | - Lilla Reiniger
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Ildikó Horváth
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (I.G.); (I.H.); (D.M.); (K.S.)
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (I.G.); (I.H.); (D.M.); (K.S.)
- Hungarian Center of Excellence for Molecular Medicine (HCEMM), In Vivo Imaging Advanced Core Facility, Semmelweis University Site, 1094 Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (I.G.); (I.H.); (D.M.); (K.S.)
| | - Etelka Tombácz
- Department of Food Engineering, University of Szeged, 6725 Szeged, Hungary; (D.N.); (E.T.)
- Soós Ernő Water Technology Research and Development Center, University of Pannonia, 8800 Nagykanizsa, Hungary
| | - Angela Jedlovszky-Hajdu
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, 1089 Budapest, Hungary; (T.V.); (C.V.); (K.M.)
- Correspondence:
| |
Collapse
|
6
|
Földes A, Reider H, Varga A, Nagy KS, Perczel-Kovach K, Kis-Petik K, DenBesten P, Ballagi A, Varga G. Culturing and Scaling up Stem Cells of Dental Pulp Origin Using Microcarriers. Polymers (Basel) 2021; 13:3951. [PMID: 34833250 PMCID: PMC8622966 DOI: 10.3390/polym13223951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Ectomesenchymal stem cells derived from the dental pulp are of neural crest origin, and as such are promising sources for cell therapy and tissue engineering. For safe upscaling of these cells, microcarrier-based culturing under dynamic conditions is a promising technology. We tested the suitability of two microcarriers, non-porous Cytodex 1 and porous Cytopore 2, for culturing well characterized dental pulp stem cells (DPSCs) using a shake flask system. Human DPSCs were cultured on these microcarriers in 96-well plates, and further expanded in shake flasks for upscaling experiments. Cell viability was measured using the alamarBlue assay, while cell morphology was observed by conventional and two-photon microscopies. Glucose consumption of cells was detected by the glucose oxidase/Clark-electrode method. DPSCs adhered to and grew well on both microcarrier surfaces and were also found in the pores of the Cytopore 2. Cells grown in tissue culture plates (static, non-shaking conditions) yielded 7 × 105 cells/well. In shake flasks, static preincubation promoted cell adhesion to the microcarriers. Under dynamic culture conditions (shaking) 3 × 107 cells were obtained in shake flasks. The DPSCs exhausted their glucose supply from the medium by day seven even with partial batch-feeding. In conclusion, both non-porous and porous microcarriers are suitable for upscaling ectomesenchymal DPSCs under dynamic culture conditions.
Collapse
Affiliation(s)
- Anna Földes
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
| | - Hajnalka Reider
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
- Department of Applied Biotechnology and Food Science, University of Technology and Economics, H-1089 Budapest, Hungary;
| | - Anita Varga
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
- Department of Applied Biotechnology and Food Science, University of Technology and Economics, H-1089 Budapest, Hungary;
| | - Krisztina S. Nagy
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
- Institute of Biophysics and Radiation Biology, Semmelweis University, H-1089 Budapest, Hungary;
| | - Katalin Perczel-Kovach
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
- Department of Community Dentistry, Semmelweis University, H-1089 Budapest, Hungary
| | - Katalin Kis-Petik
- Institute of Biophysics and Radiation Biology, Semmelweis University, H-1089 Budapest, Hungary;
| | - Pamela DenBesten
- Department of Orofacial Science, University of California, San Francisco, CA 94143, USA;
| | - András Ballagi
- Department of Applied Biotechnology and Food Science, University of Technology and Economics, H-1089 Budapest, Hungary;
- Gedeon Richter Plc, H-1089 Budapest, Hungary
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
- Centre for Translational Medicine, Semmelweis University, H-1089 Budapest, Hungary
| |
Collapse
|