1
|
Bhat S, Rather M, Gani S, Nabi A, Ganai SA, Shah MD, Sofi P, Jeelani F, Hussain A, Ashraf S, Anwar A, Iqbal I, Nisa TU, Summuna B, Banday S. Identification of plant based potential antifungal compounds against BMK-1 protein of Bipolaris oryzae using molecular docking approach. Sci Rep 2024; 14:15665. [PMID: 38977720 PMCID: PMC11231321 DOI: 10.1038/s41598-024-61431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/06/2024] [Indexed: 07/10/2024] Open
Abstract
Rice brown spot is an important disease of rice worldwide that inflicts substantial yield losses. The antimicrobial potential of methanol, acetone and dimethyl sulfoxide (DMSO) extracts of different medicinal plants, viz., Syzygium aromaticum, Saussurea costus, Acorus calamus, Bergenia ciliate, Geranium pratense, Mentha longifolia, Inula racemosa, Podophyllum hexandrum, Heracleum candicans and Picrorhiza kurroa, against the brown spot pathogen Bipolaris oryzae in vitro was evaluated via mycelial growth inhibition and spore germination inhibition assays. Among the plant extracts tested, 100% mycelial inhibition was observed for the methanol extract of Syzygium aromaticum at all three concentrations (2000 ppm, 3000 ppm and 4000 ppm), followed by the methanol extract of Inula racemosa (90.33%) at 4000 ppm. A maximum conidial germination inhibition of 83.54% was exhibited by the Heracleum candicans leaf extract. Phytochemical profiling of Syzygium aromaticum and Inula racemosa through liquid chromatography and mass spectrometry (HR-LCMS) revealed the presence of several compounds, such as eugenol, ursolic acid, quercetin, chlorogenic acid, and noscapine. A molecular docking approach was used to identify key inhibitory molecules against B. oryzae. Among the compounds detected in S. aromaticum and Inula racemosa, ursolic acid and noscapine were found to have the greatest binding affinity for the Big Mitogen Activated Protein Kinase (BMK-1) enzyme present in B. oryzae. In conclusion, S. aromaticum and Inula racemosa are potent compounds that could serve as lead compounds for drug discovery in the future.
Collapse
Affiliation(s)
- Sheeba Bhat
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Wadura, Sopore, Jammu and Kashmir, 193201, India
| | - Mariya Rather
- Division of Plant Pathology, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Saima Gani
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Wadura, Sopore, Jammu and Kashmir, 193201, India
| | - Asha Nabi
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Wadura, Sopore, Jammu and Kashmir, 193201, India.
| | - Shabir Ahmad Ganai
- Research Centre for Residue and Quality Analysis, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Mehraj D Shah
- Division of Plant Pathology, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Parvaze Sofi
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Wadura, Sopore, Jammu and Kashmir, 193201, India
| | - Fehim Jeelani
- Division of Agri-Economics and Statistics, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Wadura, Sopore, Jammu and Kashmir, 193201, India
| | - Arif Hussain
- Division of Horticulture, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Wadura, Sopore, Jammu and Kashmir, 193201, India
| | - Sabiha Ashraf
- College of Temperate Sericulture, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Mirgund, Jammu and Kashmir, 193121, India
| | - Ali Anwar
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Wadura, Sopore, Jammu and Kashmir, 193201, India
| | - Iram Iqbal
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Wadura, Sopore, Jammu and Kashmir, 193201, India
| | - Tawkeer Un Nisa
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Wadura, Sopore, Jammu and Kashmir, 193201, India
| | - Baby Summuna
- Directorate of Research, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Saba Banday
- Division of Plant Pathology, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| |
Collapse
|
2
|
Emiru AY, Regassa F, Endebu Duguma B, Kassaye A, Desyebelew B. Invitro antibacterial activity of bark, leaf and root extracts of combretum molle plant against streptococcus equi isolated from clinical cases of strangles in donkeys and horses. BMC Vet Res 2024; 20:102. [PMID: 38481214 PMCID: PMC10935832 DOI: 10.1186/s12917-024-03954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Effective therapy for many infections is becoming difficult due to the evolutionary development of drug resistance, and hence, the development of alternative treatment options mainly from herbs is crucial. The objective of this study was to investigate the antibacterial effects of ethanol extracts of stem bark, leaves and roots of Combretum molle against Streptococcus equi isolated from clinical cases of strangles using in vitro tests. METHODS Plant extraction was performed using a maceration technique with 80% ethanol. The mean zone of inhibition was determined using the agar well diffusion method. Six serial dilutions with different concentrations (10%, 5%, 2.5%, 1.25%, 0.625% and 0.3125%) of each plant extract were prepared using dimethyl sulfoxide (DMSO). A modified agar microdilution method was used to determine the minimum inhibitory concentration (MICs) of the extracts. RESULTS The results revealed that all plant extracts showed significant antibacterial activity. The root extract showed the best antibacterial effect compared to the others at all concentrations, with MZI values of 27.5, 23.225, 20.5, 17.9, 15.65 and 12.25 for the respective concentrations mentioned above and an MIC of 250 µg/ml. It was followed by the stem bark extract, which had MZI values of 24.67, 22.35, 18.225, 16.175, 11.125 and 8.2 millimeters and an MIC of 375 µg/ml. The leaf extract also had significant activity, with MZI values of 20.175, 18.25, 15.7, 13.125, 9.4 and 6.75 in millimeters and an MIC of 500 µg/ml. There was a direct relationship between the concentrations of the plant extracts and the level of inhibition. CONCLUSION The test plant extracts were compared with the conventional antibiotic penicillin G, and the results indicated that the parts of the test plant have significant antibacterial activity, which may support traditional claims and could be candidates for alternative drug discoveries.
Collapse
Affiliation(s)
| | - Fekadu Regassa
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | | | | | | |
Collapse
|
3
|
Yavari S, Olaifa K, Shafiee D, Rasuli R, Shafiee M. Molybdenum oxide nanotube caps decorated with ultrafine Ag nanoparticles: Synthesis and antimicrobial activity. Int J Pharm 2023; 647:123528. [PMID: 37863449 DOI: 10.1016/j.ijpharm.2023.123528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
In the contemporary era, microorganisms, spanning bacteria and viruses, are increasingly acknowledged as emerging contaminants in the environment, presenting significant risks to public health. Nevertheless, conventional methods for disinfecting these microorganisms are often ineffective. Additionally, they come with disadvantages such as high energy usage, negative environmental consequences, increased expenses, and the generation of harmful byproducts. The development of next-generation antifungal and antibacterial agents is dependent on newly synthesized nanomaterials with inherent antimicrobial behavior. In this study, we report an arc-discharge method to synthesize MoOx nanosheets and microbelts, followed by decorating them with ultrafine Ag nanoparticles (NPs). Scanning and transmission electron microscopies show that Ag NPs formation on the Molybdenum oxide nanostructures rolls them into nanotube caps (NTCs), revealing inner and outer diameters of approximately 19.8 nm and 105.5 nm, respectively. Additionally, the Ag NPs are ultrafine, with sizes in the range of 5-8 nm. Results show that the prepared NTCs exhibit dose-dependent sensitivity to both planktonic and biofilm cells of Escherichia coli and Candida albicans. The anti-biofilm activity in terms of biofilm inhibition ranged from 19.7 to 77.2% and 11.3-82.3%, while removal of more than 70% and 90% of preformed biofilms was achieved for E. coli and C. albicans, respectively, showing good potential for antimicrobial coating. Initial MoOx exhibits positive potential, while Ag-decorated Molybdenum oxide NTCs show dual potential effects (positive for Molybdenum oxide NTCs and negative for Ag NPs. Molybdenum oxide NTCs, with their strong positive potential, efficiently attract microbes due to their negatively charged cell surfaces, facilitating the antimicrobial effect of Ag NPs, leading to cell damage and death. These findings suggest that the synthesized NPs could serve as a suitable coating for biomedical applications.
Collapse
Affiliation(s)
- Shabnam Yavari
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran; Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Kayode Olaifa
- Department of Biology, Nazarbayev Intellectual School of Biology and Chemistry, Aktau, Kazakhstan; Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Darya Shafiee
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Reza Rasuli
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran.
| | - Mehdi Shafiee
- Energetic Cosmos Laboratory, Nazarbayev University, Astana 010000, Kazakhstan.
| |
Collapse
|
4
|
Gonzalez-Pastor R, Carrera-Pacheco SE, Zúñiga-Miranda J, Rodríguez-Pólit C, Mayorga-Ramos A, Guamán LP, Barba-Ostria C. Current Landscape of Methods to Evaluate Antimicrobial Activity of Natural Extracts. Molecules 2023; 28:1068. [PMID: 36770734 PMCID: PMC9920787 DOI: 10.3390/molecules28031068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
Natural extracts have been and continue to be used to treat a wide range of medical conditions, from infectious diseases to cancer, based on their convenience and therapeutic potential. Natural products derived from microbes, plants, and animals offer a broad variety of molecules and chemical compounds. Natural products are not only one of the most important sources for innovative drug development for animal and human health, but they are also an inspiration for synthetic biology and chemistry scientists towards the discovery of new bioactive compounds and pharmaceuticals. This is particularly relevant in the current context, where antimicrobial resistance has risen as a global health problem. Thus, efforts are being directed toward studying natural compounds' chemical composition and bioactive potential to generate drugs with better efficacy and lower toxicity than existing molecules. Currently, a wide range of methodologies are used to analyze the in vitro activity of natural extracts to determine their suitability as antimicrobial agents. Despite traditional technologies being the most employed, technological advances have contributed to the implementation of methods able to circumvent issues related to analysis capacity, time, sensitivity, and reproducibility. This review produces an updated analysis of the conventional and current methods to evaluate the antimicrobial activity of natural compounds.
Collapse
Affiliation(s)
- Rebeca Gonzalez-Pastor
- Biomedical Research Center (CENBIO), Eugenio Espejo School of Health Sciences, Universidad UTE, Quito 170527, Ecuador
| | - Saskya E. Carrera-Pacheco
- Biomedical Research Center (CENBIO), Eugenio Espejo School of Health Sciences, Universidad UTE, Quito 170527, Ecuador
| | - Johana Zúñiga-Miranda
- Biomedical Research Center (CENBIO), Eugenio Espejo School of Health Sciences, Universidad UTE, Quito 170527, Ecuador
| | - Cristina Rodríguez-Pólit
- Biomedical Research Center (CENBIO), Eugenio Espejo School of Health Sciences, Universidad UTE, Quito 170527, Ecuador
| | - Arianna Mayorga-Ramos
- Biomedical Research Center (CENBIO), Eugenio Espejo School of Health Sciences, Universidad UTE, Quito 170527, Ecuador
| | - Linda P. Guamán
- Biomedical Research Center (CENBIO), Eugenio Espejo School of Health Sciences, Universidad UTE, Quito 170527, Ecuador
| | - Carlos Barba-Ostria
- School of Medicine, College of Health Sciences, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| |
Collapse
|
5
|
Bhaskaracharya RK, Bhaskaracharya A, Stathopoulos C. A systematic review of antibacterial activity of polyphenolic extract from date palm ( Phoenix dactylifera L.) kernel. Front Pharmacol 2023; 13:1043548. [PMID: 36703735 PMCID: PMC9871312 DOI: 10.3389/fphar.2022.1043548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Emergence of antibiotic-resistant bacteria makes exploration of natural antibacterial products imperative. Like other fruit processing industry by-products, date kernels, a waste from date processing industry is rich in its extractable polyphenols. The rich polyphenolic content suggests that date kernel extracts (DKE) can be a cost-effective source of antimicrobial agents, however, their antibacterial activity is poorly understood. Hence, a systematic review of available literature to establish DKE's antibacterial activity is warranted. Methods: A systematic PRISMA approach was employed, and relevant studies were identified using defined keywords from Google Scholar, Scopus, PubMed, and Web of Science databases. The search results were screened based on predefined eligibility criteria and data extraction, organization, pooling, and descriptive statistical analyses of original research records conducted. Results: A total of 888 published records were retrieved from databases. Preliminary screening by applying specific eligibility criteria reduced records to 96 which after full text screening further decreased to 14 records. Escherichia coli and Staphylococcus aureus were the most studied organisms. Results indicate moderate to highly active effect shown by the less polar solvent based DKE's against Gram-positive and by the aqueous based DKE's against Gram-negative bacteria. The review confirms antibacterial activity of DKE against both Gram-positive and -negative bacteria. Heterogeneity in reported polyphenolic content and antibacterial activity are due to differences in cultivars, extraction methods, test methods, model organisms, etc. Use of standardized protocols for isolation, characterization, testing of DKE's active polyphenols to elucidate its antibacterial activity is recommended to establish the clinical efficacy of natural antibacterial compounds from DKE. Conclusion: This review outlines the current knowledge regarding antibacterial activity of polyphenolic DKE, identifying gaps in information and provides key recommendations for future research directions.
Collapse
Affiliation(s)
- Raman K. Bhaskaracharya
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates,*Correspondence: Raman K. Bhaskaracharya,
| | - Archana Bhaskaracharya
- Nepean Blue Mountains Local Health District/ University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
6
|
Masota NE, Ohlsen K, Schollmayer C, Meinel L, Holzgrabe U. Isolation and Characterization of Galloylglucoses Effective against Multidrug-Resistant Strains of Escherichia coli and Klebsiella pneumoniae. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155045. [PMID: 35956993 PMCID: PMC9370434 DOI: 10.3390/molecules27155045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
The search for new antibiotics against multidrug-resistant (MDR), Gram-negative bacteria is crucial with respect to filling the antibiotics development pipeline, which is subject to a critical shortage of novel molecules. Screening of natural products is a promising approach for identifying antimicrobial compounds hosting a higher degree of novelty. Here, we report the isolation and characterization of four galloylglucoses active against different MDR strains of Escherichia coli and Klebsiella pneumoniae. A crude acetone extract was prepared from Paeonia officinalis Linnaeus leaves, and bioautography-guided isolation of active compounds from the extract was performed by liquid–liquid extraction, as well as open column, flash, and preparative chromatographic methods. Isolated active compounds were characterized and elucidated by a combination of spectroscopic and spectrometric techniques. In vitro antimicrobial susceptibility testing was carried out on E. coli and K. pneumoniae using 2 reference strains and 13 strains hosting a wide range of MDR phenotypes. Furthermore, in vivo antibacterial activities were assessed using Galleria mellonella larvae, and compounds 1,2,3,4,6-penta-O-galloyl-β-d-glucose, 3-O-digalloyl-1,2,4,6-tetra-O-galloyl-β-d-glucose, 6-O-digalloyl-1,2,3,4-tetra-O-galloyl-β-d-glucose, and 3,6-bis-O-digalloyl-1,2,4-tri-O-galloyl-β-d-glucose were isolated and characterized. They showed minimum inhibitory concentration (MIC) values in the range of 2–256 µg/mL across tested bacterial strains. These findings have added to the number of known galloylglucoses from P. officinalis and highlight their potential against MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Nelson E. Masota
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Sandering 2, 97074 Wuerzburg, Germany
- School of Pharmacy, Muhimbili University of Health and Allied Sciences, Upanga West, Dar es Salaam P.O. Box 65013, Tanzania
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Wuerzburg, Josef-Schneider-Strasse 2, 97080 Wuerzburg, Germany
| | - Curd Schollmayer
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Sandering 2, 97074 Wuerzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Sandering 2, 97074 Wuerzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Sandering 2, 97074 Wuerzburg, Germany
- Correspondence: ; Tel.: +49-931-3185461
| |
Collapse
|
7
|
Barba-Ostria C, Carrera-Pacheco SE, Gonzalez-Pastor R, Heredia-Moya J, Mayorga-Ramos A, Rodríguez-Pólit C, Zúñiga-Miranda J, Arias-Almeida B, Guamán LP. Evaluation of Biological Activity of Natural Compounds: Current Trends and Methods. Molecules 2022; 27:4490. [PMID: 35889361 PMCID: PMC9324072 DOI: 10.3390/molecules27144490] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
Natural compounds have diverse structures and are present in different forms of life. Metabolites such as tannins, anthocyanins, and alkaloids, among others, serve as a defense mechanism in live organisms and are undoubtedly compounds of interest for the food, cosmetic, and pharmaceutical industries. Plants, bacteria, and insects represent sources of biomolecules with diverse activities, which are in many cases poorly studied. To use these molecules for different applications, it is essential to know their structure, concentrations, and biological activity potential. In vitro techniques that evaluate the biological activity of the molecules of interest have been developed since the 1950s. Currently, different methodologies have emerged to overcome some of the limitations of these traditional techniques, mainly via reductions in time and costs. These emerging technologies continue to appear due to the urgent need to expand the analysis capacity of a growing number of reported biomolecules. This review presents an updated summary of the conventional and relevant methods to evaluate the natural compounds' biological activity in vitro.
Collapse
Affiliation(s)
- Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Benjamin Arias-Almeida
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| |
Collapse
|